Critical care : the official journal of the Critical Care Forum
-
Randomized Controlled Trial
Mechanical ventilation with high tidal volume induces inflammation in patients without lung disease.
Mechanical ventilation (MV) with high tidal volumes may induce or aggravate lung injury in critical ill patients. We compared the effects of a protective versus a conventional ventilatory strategy, on systemic and lung production of tumor necrosis factor-alpha (TNF-alpha) and interleukin-8 (IL-8) in patients without lung disease. ⋯ The use of lower tidal volumes may limit pulmonary inflammation in mechanically ventilated patients even without lung injury.
-
In the past decade there has been a resurgence of interest in the clinical use of inert gases. In the present paper we review the use of inert gases as anesthetics and neuroprotectants, with particular attention to the clinical use of xenon. We discuss recent advances in understanding the molecular pharmacology of xenon and we highlight specific pharmacological targets that may mediate its actions as an anesthetic and neuroprotectant. We summarize recent in vitro and in vivo studies on the actions of helium and the other inert gases, and discuss their potential to be used as neuroprotective agents.
-
Review
Clinical review: idiopathic pulmonary fibrosis acute exacerbations--unravelling Ariadne's thread.
Idiopathic pulmonary fibrosis (IPF) is a dreadful, chronic, and irreversibly progressive fibrosing disease leading to death in all patients affected, and IPF acute exacerbations constitute the most devastating complication during its clinical course. IPF exacerbations are subacute/acute, clinically significant deteriorations of unidentifiable cause that usually transform the slow and more or less steady disease decline to the unexpected appearance of acute lung injury/acute respiratory distress syndrome (ALI/ARDS) ending in death. The histological picture is that of diffuse alveolar damage (DAD), which is the tissue counterpart of ARDS, upon usual interstitial pneumonia, which is the tissue equivalent of IPF. ⋯ IPF exacerbations require rapid decisions about when and whether to initiate mechanical support. Admission to an intensive care unit (ICU) is a particular clinical and ethical challenge because of the extremely poor outcome. Transplantation in the ICU setting often presents insurmountable difficulties.
-
Randomized Controlled Trial
Haemodynamic optimisation improves tissue microvascular flow and oxygenation after major surgery: a randomised controlled trial.
Post-operative outcomes may be improved by the use of flow related end-points for intra-venous fluid and/or low dose inotropic therapy. The mechanisms underlying this benefit remain uncertain. The objective of this study was to assess the effects of stroke volume guided intra-venous fluid and low dose dopexamine on tissue microvascular flow and oxygenation and inflammatory markers in patients undergoing major gastrointestinal surgery. ⋯ Stroke volume guided fluid and low dose inotropic therapy was associated with improved global oxygen delivery, microvascular flow and tissue oxygenation but no differences in the inflammatory response to surgery. These observations may explain improved clinical outcomes associated with this treatment in previous trials.
-
In 2009 Critical Care provided important and clinically relevant research data for management and prevention of infections in critically ill patients. The present review summarises the results of these observational studies and clinical trials and discusses them in the context of the current relevant scientific and clinical background. In particular, we discuss recent epidemiologic data on nosocomial infections in intensive care units, present new approaches to prevention of ventilator-associated pneumonia, describe recent advances in biomarker-guided antibiotic stewardship and attempt to briefly summarise specific challenges related to the management of infections caused by multidrug-resistant microorganisms and influenza A (H1N1).