Critical care : the official journal of the Critical Care Forum
-
A recent observational study in a large cohort of critically ill patients confirms the association between hyperlactatemia and mortality. The mechanisms regulating the rates of lactate production and clearance in critical illness remain poorly understood. ⋯ Possible mechanisms include regional hypoperfusion, an inflammation-induced upregulation of the glycolitic flux, alterations in lactate-clearing mechanisms, and increases in the work of breathing. Understanding how these complex processes interact to produce elevations in lactate continues to be an important area of research.
-
Use of terlipressin in septic shock relies on a series of European studies resulting in a better knowledge of this vasopressive agent. Additional studies demonstrate that this agent appears to have attractive properties when administered properly. In comparison to prior reports, continuous infusion of low-dose terlipressin seems superior when administered to septic animals. For the first time in humans, Morelli and colleagues compared this mode of administration with other vasopressors.
-
Liver dysfunction is a common feature of severe sepsis and is associated with a poor outcome. Both liver perfusion and hepatic inflammatory response in sepsis might be affected by sympathetic nerve activity. However, the effects of thoracic epidural anesthesia (TEA), which is associated with regional sympathetic block, on septic liver injury are unknown. Therefore, we investigated hepatic microcirculation and inflammatory response during TEA in septic rats. ⋯ This study demonstrates that TEA reverses sepsis-induced alterations in hepatic perfusion and ameliorates hepatic leukocyte recruitment in sepsis.
-
Current evidence regarding potentially different host response mechanisms in sepsis according to the type of initiating infection is sporadic. It is possible that alterations in cell populations, variations in effector molecules, and the degree of apoptosis differ between sepsis caused by ventilator-associated pneumonia (VAP) and non-VAP sepsis. VAP is one of the most common infections and leading causes of sepsis in the intensive care unit, and mortality remains high. A better understanding of the unique pathophysiologic features of VAP is needed in order to develop interventions that target those specific pathways.
-
In the current issue of Critical Care, Simon and coworkers investigated the effects of first-line arginine vasopressin (AVP) on organ function and systemic metabolism compared with norepinephrine in a pig model of fecal peritonitis. AVP was titrated according to the mean arterial pressure suggesting a vasopressor rather than a hormone replacement therapy. ⋯ It needs to be determined whether AVP is most beneficial as a constant low-dose infusion to supplement norepinephrine or in higher doses than currently recommended to substitute norepinephrine. In addition, future studies are warranted to evaluate whether a first-line therapy of AVP is superior to a last-resort administration.