Critical care : the official journal of the Critical Care Forum
-
Sepsis is the leading cause of admission to critical care units worldwide, with increasing research and publications reflecting this. Tight control of the blood glucose concentration can reduce morbidity and mortality but the obtained values can be influenced by the method of measurement. Increasing awareness of interactions with patients and relatives can make or break relationships between staff and patients/families.
-
Recent papers discussed include two large, multicentre, high-positive end-expiratory pressure trials in acute lung injury and reflects upon the usefulness of such trial designs. Further papers considered include the emerging story of beta2-agonists for pulmonary oedema, highlights the newly described, iatrogenic demon, of ventilator-induced diaphragm injury, promotes the addition of B-type natriuretic peptide testing to the prediction of extubation success, and muses again over the oxygen debate.
-
Patients requiring prolonged acute mechanical ventilation (PAMV) represent one-third of those who need mechanical ventilation, but they utilize two-thirds of hospital resources devoted to mechanical ventilation. Measures are needed to optimize the efficiency of care in this population. Both duration of intensive care unit stay and mechanical ventilation are associated with anemia and increased rates of packed red blood cell (pRBC) transfusion. We hypothesized that transfusions among patients receiving PAMV are common and associated with worsened clinical and economic outcomes. ⋯ Patients receiving PAMV are at high likelihood of being transfused with multiple units of blood at relatively high hemoglobin levels. Transfusions independently contribute to increased risk for hospital death, length of stay, and costs. Reducing exposure of PAMV patients to blood may represent an attractive target for efforts to improve quality and efficiency of health care delivery in this population.
-
Comment
Pressure support ventilation attenuates ventilator-induced protein modifications in the diaphragm.
Common medical conditions that require mechanical ventilation include chronic obstructive lung disease, acute lung injury, sepsis, heart failure, drug overdose, neuromuscular disorders, and surgery. Although mechanical ventilation can be a life saving measure, prolonged mechanical ventilation can also present clinical problems. ⋯ This mechanical ventilation-induced diaphragmatic weakness is important because the most frequent cause of weaning difficulty is respiratory muscle failure due to inspiratory muscle weakness and/or a decline in inspiratory muscle endurance. Therefore, developing methods to protect against mechanical ventilation-induced diaphragmatic weakness is important.
-
Functional residual capacity (FRC) reference values are obtained from spontaneous breathing patients, and are measured in the sitting or standing position. During mechanical ventilation FRC is determined by the level of positive end-expiratory pressure (PEEP), and it is therefore better to speak of end-expiratory lung volume. Application of higher levels of PEEP leads to increased end-expiratory lung volume as a result of recruitment or further distention of already ventilated alveoli. The aim of this study was to measure end-expiratory lung volume in mechanically ventilated intensive care unit (ICU) patients with different types of lung pathology at different PEEP levels, and to compare them with predicted sitting FRC values, arterial oxygenation, and compliance values. ⋯ End-expiratory lung volume measured at 5 cmH2O PEEP was markedly lower than predicted sitting FRC values in all groups. Only in patients with secondary lung disorders were PEEP-induced changes in end-expiratory lung volume the result of derecruitment. In combination with compliance, end-expiratory lung volume can provide additional information to optimize the ventilator settings.