Critical care : the official journal of the Critical Care Forum
-
Comparative Study Controlled Clinical Trial
Impact of computerized physician order entry on medication prescription errors in the intensive care unit: a controlled cross-sectional trial.
Medication errors in the intensive care unit (ICU) are frequent and lead to attributable patient morbidity and mortality, increased length of ICU stay and substantial extra costs. We investigated if the introduction of a computerized ICU system (Centricity Critical Care Clinisoft, GE Healthcare) reduced the incidence and severity of medication prescription errors (MPEs). ⋯ The ICU computerization, including the medication order entry, resulted in a significant decrease in the occurrence and severity of medication errors in the ICU.
-
Treatment in the intensive care unit of patients with end-stage liver disease has been limited. Liver transplantation has been a major improvement in this and has become standard in the management of these patients. However, many patients die awaiting liver transplantation, mainly due to the scarcity of organ donors. ⋯ To date, the most widely developed system has been the Molecular Adsorbent Recirculating System (MARS), which is based on the selective removal of albumin-bound toxins from the blood. MARS enables simultaneous liver and kidney detoxification, improving the patient's clinical condition. It is a major improvement in the management of patients with hepatic failure that could permit, when appropriately indicated, recovery from an acute episode and enhance the chances of survival while waiting for an available organ donor.
-
Hospital patients can experience serious adverse events during their stay. To identify, review and treat these patients and to prevent serious adverse events, we introduced a medical emergency team (MET) service into our hospital in September 2000 following a 1-year period of preparation and education. ⋯ Furthermore, they have allowed improved analysis and characterization of 'at-risk' patients and their needs. Four years later, we remain glad we MET.
-
During the past decade, critical care in the out-of-hospital setting has transcended the original emphasis on on-scene advanced life support interventions by doctors, paramedics, and nurses. Many of the life-saving efforts and advances in critical care situations have now begun to focus more and more on how, through evolving technology, the average person can save lives and perhaps even spare precious intensive care unit (ICU) resources. A striking example was the recent study conducted at the Chicago airports at which automated external defibrillators (AEDs) were deployed throughout the airline terminals for use by the public at large. ⋯ Thus, this technology-assisted intervention, performed by an average person, pre-empted the need for many other critical care interventions and prolonged care in the ICU. Equipped with automated prompts to improve performance, new technology also exists to help to monitor the inadequacies and too-frequent interruption of life-saving chest compressions during basic cardiopulmonary resuscitation. As a result of these technological advances, survival rates for cardiac arrest are now expected to improve significantly.
-
In seriously infected patients with acute renal failure and who require continuous renal replacement therapy, data on continuous infusion of ceftazidime are lacking. Here we analyzed the pharmacokinetics of ceftazidime administered by continuous infusion in critically ill patients during continuous venovenous haemodiafiltration (CVVHDF) in order to identify the optimal dosage in this setting. ⋯ We conclude that a dosing regimen of 3 g/day ceftazidime, by continuous infusion, following a 2 g loading dose, results in serum concentrations more than four times the minimum inhibitory concentration for all susceptible pathogens, and we recommend this regimen in critically ill patients undergoing CVVHDF.