Critical care : the official journal of the Critical Care Forum
-
In patients with acute hypoxemic respiratory failure (AHRF) under mechanical ventilation, the change in pressure slope during a low-flow insufflation indicates a global airway opening pressure (AOP) needed to reopen closed airways and may be used for titration of positive end-expiratory pressure. ⋯ AOPglobal mostly reflects the lowest opening pressure in the lung and frequently underestimates the highest regional AOP in mechanically ventilated patients with AHRF. A progressive slope change during the low-flow pressure-time curve indicates the presence of several and higher regional AOPs.
-
Despite intensive clinical and scientific efforts, the mortality rate of sepsis remains high due to the lack of precise biomarkers for patient stratification and therapeutic guidance. Interleukin 40 (IL-40), a novel cytokine with immune regulatory functions in human diseases, was elevated at admission in two independent cohorts of patients with sepsis. High levels of secreted IL-40 in septic patients were positively correlated with PCT, CRP, lactate (LDH), and Sequential Organ Failure Assessment (SOFA) scores, in which IL-40 levels were used to stratify the early death of critically ill patients with sepsis. ⋯ Clinically, the IL-40 level was positively correlated with the NET-related MPO/dsDNA ratio in septic patients. Finally, with antibiotics (gentamycin), genetic knockout of IL-40 prevented polymicrobial sepsis fatalities more efficiently than without gentamycin treatment. In summary, these data reveal a novel prognostic strategy for sepsis and that IL-40 may serve as a novel therapeutic target for sepsis.
-
Traumatic brain injury (TBI) is a major public health concern worldwide, contributing to high rates of injury-related death and disability. Severe traumatic brain injury (sTBI), although it accounts for only 10% of all TBI cases, results in a mortality rate of 30-40% and a significant burden of disability in those that survive. This study explored the potential of metabolomics in the diagnosis of sTBI and explored the potential of metabolomics to examine probable primary and secondary brain injury in sTBI. ⋯ The results demonstrate that serum metabolomics has diagnostic potential for sTBI and may reflect molecular mechanisms of primary and secondary brain injuries when comparing metabolite profiles between day 1 and day 4 post-injury. These early changes in serum metabolites may provide insight into molecular pathways or mechanisms of primary injury and ongoing secondary injuries, revealing potential therapeutic targets for sTBI. This work also highlights the need for further research and validation of sTBI metabolite biomarkers in a larger cohort.