Neuromodulation : journal of the International Neuromodulation Society
-
The recent availability of paraesthesia/sensation free spinal cord stimulation (SCS) modalities allow the design of clinical trials of SCS using placebo/sham controls and blinding of patients, clinicians, and researchers. The aims of this study were to: 1) systematically review the current evidence base of randomized controlled trials (RCTs) of SCS placebo/sham trials and 2) to undertake a methodological critique of their methods. Based on this critique, we developed a checklist for the design and reporting of future RCTs of SCS. ⋯ To date the methods of placebo/sham control and blinding in RCTs have been poorly reported, leading to concerns about the validity and replicability of the findings. Important aspects that need to be clearly reported in the design of placebo-/sham-controlled RCTs of SCS include the transparent reporting of stimulation programming parameters, patient position during perception threshold measurement, management of the patient handheld programmer, frequency of recharging, and assessment of the fidelity of blinding.
-
The electrically evoked compound action potential (ECAP) is a measure of the response from a population of fibers to an electrical stimulus. ECAPs can be assessed during spinal cord stimulation (SCS) to elucidate the relationship between stimulation, electrophysiological response, and neuromodulation. This has consequences for the design and programming of SCS devices. ⋯ John Parker is the founder and CEO of Saluda Medical and holds stock options. Milan Obradovic, Nastaran Hesam Shariati, Dean M. Karantonis, Peter Single, James Laird-Wah, Robert Gorman and Mark Bickerstaff are employees of Saluda Medical with stock options. At the time the data was collected for the study, Prof. Cousins was a paid consultant for Saluda Medical. John Parker, Milan Obradovic, Dean Karantonis, James Laird-Wah, Robert Gorman and Peter Single are co-inventors in one or more patents related to the topics discussed in this work.
-
High-frequency spinal cord stimulation (SCS) administered below the sensory threshold (subparesthetic) can inhibit pain, but the mechanisms remain obscure. We examined how different SCS paradigms applied at intensities below the threshold of Aβ-fiber activation (sub-sensory threshold) affect spinal nociceptive transmission in rats after an L5 spinal nerve ligation (SNL). ⋯ Traditional suprathreshold SCS acutely inhibits spinal nociceptive transmission. Low-frequency subthreshold SCS with a long pulse width (200 Hz, 1 msec), but not higher-frequency SCS, also attenuates C-LFP.