Neuromodulation : journal of the International Neuromodulation Society
-
While preliminary evidence suggests that noninvasive vagal nerve stimulation (nVNS) may enhance cognition, to our knowledge, no study has directly assessed the effects of nVNS on brain function and cognitive performance in healthy individuals. The aim of this study was therefore to assess whether nVNS enhances complex visuospatial problem solving in a normative sample. Functional magnetic resonance imaging (fMRI) was used to examine underlying neural substrates. ⋯ We hypothesize that nVNS increased attention compared to sham, and that this effect led to enhanced executive functions, and consequently to better performance on visuospatial reasoning and recognition tasks. Results provide initial support that nVNS may be a low-risk, low-cost treatment for cognitive disorders.
-
Randomized Controlled Trial
Cervical Vagus Nerve Stimulation Improves Neurologic Outcome After Cardiac Arrest in Mice by Attenuating Oxidative Stress and Excessive Autophagy.
Cerebral ischemia and reperfusion (I/R) induces oxidative stress and activates autophagy, leading to brain injury and neurologic deficits. Cervical vagus nerve stimulation (VNS) increases cerebral blood flow (CBF). In this study, we investigate the effect of VNS-induced CBF increase on neurologic outcomes after cardiac arrest (CA). ⋯ Oxidative stress induced by global brain I/R following CA/ROSC leads to early excessive autophagy and impaired autophagic flux. VNS promoted CBF recovery, ameliorating these changes. Neurologic and histologic outcomes were also improved.
-
Vagus nerve stimulation (VNS) is an adjunctive therapy for drug-resistant epilepsy. Noninvasive evoked potential recordings in laryngeal muscles (LMEPs) innervated by vagal branches may provide a marker to assess effective vagal nerve fiber activation. We investigated VNS-induced LMEPs in patients with epilepsy in acute and chronic settings. ⋯ Noninvasive VNS-induced LMEP recording is feasible both at initiation of VNS therapy and after one year. Low output currents (0.25-1.00 mA) may be sufficient to activate vagal Aα-motor fibers. Maximal LMEP amplitudes seemed to decrease after chronic VNS therapy in patients.