Neuromodulation : journal of the International Neuromodulation Society
-
The subthalamic nucleus (STN) is an effective deep brain stimulation target for Parkinson disease (PD) and obsessive-compulsive disorder and has been implicated in reward and motivational processing. In this study, we assessed the STN and prefrontal oscillatory dynamics in the anticipation and receipt of reward and loss using a task commonly used in imaging. ⋯ Together, our findings highlight a role for the left STN in reward and loss processing and a potential role in addictive behaviors. These findings emphasize the cognitive-limbic function of the STN and its role as a physiologic target for neuropsychiatric disorders.
-
Multicenter Study
Quality of Life and Motor Outcomes in Patients With Parkinson's Disease 12 Months After Deep Brain Stimulation in China.
Long-term levodopa use is frequently associated with fluctuations in motor response and can have a serious adverse effect on the quality of life (QoL) of patients with Parkinson's disease (PD). Deep brain stimulation (DBS) is effective in improving symptoms of diminished levodopa responsiveness. QoL improvements with DBS have been shown in several randomized control trials, mostly in Europe and the United States; however, there is a need for evidence from regions around the world. ⋯ The ClinicalTrials.gov registration number for this study is NCT02937688.
-
Subthalamic nucleus (STN) deep brain stimulation (DBS) programming in patients with Parkinson disease (PD) may be challenging, especially when using segmented leads. In this study, we integrated a previously validated probabilistic STN sweet spot into a commercially available software to evaluate its predictive value for clinically effective DBS programming. ⋯ Integration of a probabilistic STN functional sweet spot into a surgical programming software shows a promising capability to predict the best level and directional contact(s) as well as stimulation settings in DBS for PD and could be used to optimize programming with segmented lead technology. This integrated image-based programming approach still needs to be evaluated on a bigger data set and in a future prospective multicenter cohort.
-
Developments in deep brain stimulation (DBS) technology have enabled the ability to detect local field potentials (LFPs) in Parkinson disease (PD). Gait dysfunction is one of the most prevalent deficits seen in PD. However, no consensus has been reached on the effect of gait on LFPs and the relationship between LFPs and clinical measures of gait. The objective of this systematic review was to synthesize existing research regarding the relationship between gait dysfunction and LFPs in PD. ⋯ This review highlights the need to consider the effect of gait on LFP recordings, particularly when used to guide DBS programming. Although sample sizes were small, it appears LFPs are associated to and modulated by gait in patients with PD. This evidence suggests that LFPs have the potential to be used as a biomarker of gait dysfunction in PD.