Neuromodulation : journal of the International Neuromodulation Society
-
Randomized Controlled Trial
Feasibility and Safety of High-Definition Infraslow Pink Noise Stimulation for Treating Chronic Tinnitus-A Randomized Placebo-Controlled Trial.
Tinnitus has been linked to activity and connectivity changes in the auditory cortex (AC), parahippocampus (PHC), and posterior cingulate cortex (PCC). Although previous studies have targeted these areas individually, no study has yet modulated them simultaneously. Furthermore, novel stimulation designs may be superior to traditional alternating or direct current stimulation. This pilot study investigated the feasibility and safety of a novel brain stimulation technique (high-definition transcranial infraslow pink noise stimulation [HD-tIPNS]) for treating chronic tinnitus targeting the AC, PHC, and PCC. ⋯ This study was registered with the Australia New Zealand Clinical Trial Registry (Registry number: ACTRN12621000151831; Universal Trial Number: U1111-1261-6945).
-
The combination of repetitive transcranial magnetic stimulation (rTMS) and motor practice is based on the theory of neuromodulation and use-dependent plasticity. Predictive planning of occupational therapy (OT) is important for patients with rTMS conditioning. Recovery characteristics based on the severity of pretreatment upper extremity paralysis can guide the patient's practice plan for using the paretic hand. Therefore, we evaluated the recovery of patients with upper limb paralysis due to stroke who underwent a novel intervention of rTMS combined with OT (NEURO) according to the severity of upper limb paralysis based on the scores of the Fugl-Meyer assessment for upper extremity (FMA-UE) with recovery in proximal upper extremity, wrist, hand, and coordination. ⋯ This study had enough patients who were divided according to severity and stratified by lesion location and handedness parameters. Our results suggest that independently of these factors, the extent of recovery of upper limb motor parts after NEURO varies according to the severity of paralysis.
-
Randomized Controlled Trial
Burst Transspinal Magnetic Stimulation Alleviates Nociceptive Pain in Parkinson Disease-A Pilot Phase II Double-Blind, Randomized Study.
Nociception is the most prevalent pain mechanism in Parkinson disease (PD). It negatively affects quality of life, and there is currently no evidence-based treatment for its control. Burst spinal cord stimulation has been used to control neuropathic pain and recently has been shown to relieve pain of nociceptive origin. In this study, we hypothesize that burst transspinal magnetic stimulation (bTsMS) reduces nociceptive pain in PD. ⋯ The Clinicaltrials.gov registration number for the study is NCT04546529.
-
The ability to selectively up- or downregulate interregional brain connectivity would be useful for research and clinical purposes. Toward this aim, cortico-cortical paired associative stimulation (ccPAS) protocols have been developed in which two areas are repeatedly stimulated with a millisecond-level asynchrony. However, ccPAS results in humans using bifocal transcranial magnetic stimulation (TMS) have been variable, and the mechanisms remain unproven. In this study, our goal was to test whether ccPAS mechanism is spike-timing-dependent plasticity (STDP). ⋯ The results support the idea that ccPAS induces STDP and may selectively up- or downregulate effective connectivity between targeted regions in the human brain.
-
Repetitive paired-pulse transcranial magnetic stimulation (iTMS) at indirect (I) wave intervals increases motor-evoked potentials (MEPs) produced by transcranial magnetic stimulation (TMS) to primary motor cortex (M1). However, the effects of iTMS at early and late intervals on the plasticity of specific I-wave circuits remain unclear. This study therefore aimed to assess how the timing of iTMS influences intracortical excitability within early and late I-wave circuits. To investigate the cortical effects of iTMS more directly, changes due to the intervention were also assessed using combined TMS-electroencephalography (EEG). ⋯ The timing of iTMS failed to influence which I-wave circuits were potentiated by the intervention. In contrast, decreases in the N45 suggest that the neuroplastic effects of iTMS may include disinhibition of intracortical inhibitory processes.