Toxicological sciences : an official journal of the Society of Toxicology
-
Cigarette smoke (CS) imposes a strong oxidative burden on exposed tissues resulting in a severely disturbed oxidant/antioxidant balance, which in the context of chronic exposure is assumed to be a key contributor to CS-related diseases. Because of its emerging central role in orchestrating the general cellular antioxidant response, the pathway leading to the activation of the transcription factor Nrf2 has received mounting attention over the past decade in investigations aimed at elucidating CS-induced pathophysiological mechanisms. To comprehensively characterize the impact of Nrf2 in acute and subchronic smoking scenarios, Nrf2(-/-) mice and their wild-type (wt) ICR littermates were exposed to either ambient air (sham exposure) or one of three doses of CS for up to 5 months, with two postexposure endpoints of 1 and 13 days. ⋯ Importantly, in comparison to wt mice, an attenuated cell cycle/mitotic response and intensified stress gene expression pattern were observed in exposed Nrf2(-/-) mice, which was paralleled by clear dose-dependent effects on alveolar destruction and impaired lung function. In contrast, the inflammation-related transcriptional response and scores for various bronchioalveolar inflammation parameters were qualitatively and quantitatively similar in CS-exposed mice of both genotypes. Taken together, these results confirm the protective nature of Nrf2 in oxidative stress scenarios and suggest that the enhanced emphysematous phenotype exhibited by CS-exposed Nrf2(-/-) mice is more likely caused by an imbalance in cell loss and regeneration than by increased inflammation.
-
Pyrethroid insecticides are one of the most commonly used residential and agricultural insecticides. Based on the increased use of pyrethroids and recent studies showing that pregnant women and children are exposed to pyrethroids, there are concerns over the potential for developmental neurotoxicity. However, there have been relatively few studies on the developmental neurotoxicity of pyrethroids. ⋯ However, at lower doses, body axis curvature and spasms were observed, which were reminiscent of the classic syndromes observed with pyrethroid toxicity. Treatment with diazepam ameliorated the spasms, while treatment with the sodium channel antagonist MS-222 ameliorated both spasms and body curvature, suggesting that pyrethroid-induced neurotoxicity is similar in zebrafish and mammals. Taken in concert, these data suggest that zebrafish may be an appropriate alternative model to study the mechanism(s) responsible for the developmental neurotoxicity of pyrethroid insecticides and aid in identification of compounds that should be further tested in mammalian systems.
-
Alpha-naphthyl isothiocyanate (ANIT) is a hepatotoxicant that produces acute intrahepatic cholestasis in rodents. Farnesoid X receptor (FXR) and pregnane X receptor (PXR) are two major bile acid sensors in liver. The purpose of this study was to characterize the regulation of hepatic transporters by FXR and PXR during ANIT-induced liver injury. ⋯ ANIT induced mRNA expression of Mdr2, Bsep, and Atp8b1 in wild-type and PXR-null mice but failed to upregulate these genes in FXR-null mice. mRNA expression of uptake transporters declined in livers of all genotypes following ANIT treatment. ANIT increased Ostbeta and Mrp3 mRNA in livers of wild-type and PXR-null mice but did not alter Ostbeta mRNA in FXR-null mice. In conclusion, FXR deficiency enhances susceptibility of mice to ANIT-induced liver injury, likely a result of impaired induction of hepatobiliary efflux transporters and subsequent hepatic accumulation of unconjugated bile acids.
-
Cardiovascular disease has recently been suggested to be a significant complication of cancer treatment with several kinase inhibitors. In some cases, the mechanisms leading to cardiotoxicity are postulated to include mitochondrial dysfunction, either as a primary or secondary effect. Detecting direct effects on mitochondrial function, such as uncoupling of oxidative phosphorylation or inhibition of electron transport chain components, as well as identifying targets within the mitochondrial electron transport chain, can be accomplished in vitro. ⋯ Furthermore, we measured respiratory capacity of isolated rat heart mitochondria in the presence of the four kinase inhibitors and examined their effect on each of the oxidative phosphorylation complexes. Of the four kinase inhibitors examined, only sorafenib directly impaired mitochondrial function at clinically relevant concentrations, potentially contributing to the cytotoxic effect of the drug. For the other three kinase inhibitors lacking direct mitochondrial effects, altered kinase and other signaling pathways, are a more reasonable explanation for potential toxicity.
-
Peroxisome proliferator-activated receptor (PPAR) beta/delta-null mice exhibit exacerbated hepatotoxicity in response to administration of carbon tetrachloride (CCl(4)). To determine whether ligand activation of the receptor protects against chemical toxicity in the liver, wild-type and PPARbeta/delta-null mice were administered CCl(4) with or without coadministration of the highly specific PPARbeta/delta ligand GW0742. Biomarkers of liver toxicity, including serum alanine aminotransferase (ALT) and hepatic tumor necrosis factor (TNF) alpha mRNA, were significantly higher in CCl(4)-treated PPARbeta/delta-null mice compared to wild-type mice. ⋯ While PPARbeta/delta-null hepatic stellate exhibited higher rates of proliferation compared to wild-type cells, GW0742 did not affect alpha-smooth muscle actin expression in these cells. Combined, these findings demonstrate that ligand activation of PPARbeta/delta protects against chemically induced hepatotoxicity by downregulating expression of proinflammatory genes. Hepatocytes and hepatic stellate cells do not appear to directly mediate the inhibitory effects of ligand activation of PPARbeta/delta in liver, suggesting the involvement of paracrine and autocrine events mediated by hepatic cells.