Toxicological sciences : an official journal of the Society of Toxicology
-
Pyridostigmine, a carbamate cholinesterase (ChE) inhibitor, has been used for decades in the treatment of the autoimmune disorder myasthenia gravis and was used prophylactically to protect soldiers from possible organophosphorus nerve agent exposures during the Persian Gulf War. Pyridostigmine is a charged, quaternary compound and thus would not be expected to easily pass the blood-brain barrier. Some studies have suggested, however, that stress may alter blood-brain barrier integrity and allow pyridostigmine to enter the brain. ⋯ Repeated restraint had little effect on functional signs of pyridostigmine toxicity, however. Whole blood and diaphragm ChE were markedly reduced 1 h after the last treatment, but stress had no influence on ChE inhibition in either peripheral or central tissues. The results suggest that acute and repeated restraint stress have little effect on pyridostigmine neurotoxicity or apparent entry of pyridostigmine into the brain.
-
Naturally mated female New Zealand White (NZW) rabbits (24/group) received formamide (35, 70, or 140 mg/kg/day) or vehicle (1 ml/kg deionized/distilled water) by gavage on gestational days (GD) 6 through 29. The study was conducted using a 2-replicate design. Maternal food consumption (absolute and relative), body weight, and clinical signs were monitored at regular intervals throughout gestation. ⋯ There was no effect of treatment on the incidence of external, visceral, or skeletal malformations or variations in animals surviving to scheduled necropsy. In summary, the no-observed-adverse-effect level (NOAEL) for maternal toxicity was 70 mg/kg/day and the lowest-observed-adverse-effect level (LOAEL) was 140 mg/kg/day under the conditions of this study. Similarly, the NOAEL for developmental toxicity was 70 mg/kg/day and the LOAEL was 140 mg/kg/day.
-
Review
Ontogeny of the N-methyl-D-aspartate (NMDA) receptor system and susceptibility to neurotoxicity.
The NMDA receptor has been widely investigated in recent years as a target for the pharmacological management of seizures, pain and a variety of neurological disorders. Its role in normal central nervous system (CNS) activity and development, as well as in the development of CNS abnormalities and neurodegeneration has also been of interest. The NMDA receptor is one of three pharmacologically distinct subtypes of ionotropic receptor channels that are sensitive to the endogenous excitatory amino acid, L-glutamate. ⋯ Recent findings indicate that if NMDA receptors are blocked during a specific period in neonatal life (first two weeks postnatally in the rat), massive apoptotic neurodegeneration results, due not to excitotoxic overstimulation of neurons but to deprivation of stimulation. These observations require further laboratory evidence and support in order to establish their relevance to drug-induced human neurodevelopmental concerns. It is necessary to investigate the relevance of these findings in other animal species in addition to the rat, most notably, nonhuman primates, where neuronal cytoarchitecture and development are significantly different than the rodent but more like the human.