Toxicological sciences : an official journal of the Society of Toxicology
-
Phosgene exposure via an industrial or warfare release produces severe acute lung injury (ALI) with high mortality, characterized by massive pulmonary edema, disruption of epithelial tight junctions, surfactant dysfunction, and oxidative stress. There are no targeted treatments for phosgene-induced ALI. Previous studies demonstrated that nitric oxide synthase 2 (NOS-2) is upregulated in the lungs after phosgene exposure; however, the role of NOS-2 in the pathogenesis of phosgene-induced ALI remains unknown. ⋯ Furthermore, aerosolized 1400 W augmented expression of SP-B and prevented downregulation of tight junction protein zonula occludens 1 (ZO-1), both critical for maintenance of normal lung physiology and barrier integrity. We also demonstrate for the first time that NOS-2-derived nitric oxide downregulates the ZO-1 expression at the transcriptional level in human lung epithelial cells, providing a novel target for ameliorating vascular leak in ALI. Our data demonstrate that lung NOS-2 plays a critical role in the development of phosgene-induced ALI and suggest that aerosolized NOS-2 inhibitors offer a novel therapeutic strategy for its treatment.
-
Although the importance of mitochondrial dysfunction in acute kidney injury (AKI) has been documented, noninvasive early biomarkers of mitochondrial damage are needed. We examined urinary ATP synthase subunit β (ATPSβ) as a biomarker of renal mitochondrial dysfunction during AKI. Mice underwent sham surgery or varying degrees (5, 10, or 15 min ischemia) of ischemia/reperfusion (I/R)-induced AKI. ⋯ Immunoblot analyses of patient urine samples collected 36 h after cardiac surgery revealed increased urinary ATPSβ levels in patients with postcardiac surgery-induced AKI. LC-MS/MS urinalysis in human subjects with AKI confirmed increased ATPSβ. These translational studies provide evidence that ATPSβ may be a novel and sensitive urinary biomarker of renal mitochondrial dysfunction and could serve as valuable tool for the testing of potential therapies for AKI and chemical-induced nephrotoxicity.
-
There is growing evidence that oxidative stress plays critical roles in the pathogenesis of cardiac remodeling. In the present study, we established a rat model of passive smoking and investigated the antioxidant effects of hydrogen sulfide (H2S) on smoking-induced left ventricular remodeling. Cardiac structure and function were evaluated using 2-dimensional echocardiography. ⋯ Our results indicated that H2S could protect against left ventricular remodeling in smoking rats via attenuation of oxidative stress. Moreover, H2S was also found to increase the phosphorylation of Akt and GSK3β and decrease the nuclear expression of Fyn, which consequently leads to nuclear translocation of Nrf2 and elevated expression of HO-1 and NQO1. In conclusion, H2S may exert antioxidant effects on left ventricular remodeling in smoking rats via PI3K/Akt-dependent activation of Nrf2 signaling.
-
Sulfur mustard (SM) is a chemical weapon stockpiled today in volatile regions of the world. SM inhalation causes a life-threatening airway injury characterized by airway obstruction from fibrin casts, which can lead to respiratory failure and death. Mortality in those requiring intubation is more than 80%. No therapy exists to prevent mortality after SM exposure. Our previous work using the less toxic analog of SM, 2-chloroethyl ethyl sulfide, identified tissue plasminogen activator (tPA) an effective rescue therapy for airway cast obstruction (Veress, L. A., Hendry-Hofer, T. B., Loader, J. E., Rioux, J. S., Garlick, R. B., and White, C. W. (2013). Tissue plasminogen activator prevents mortality from sulfur mustard analog-induced airway obstruction. Am. J. Respir. Cell Mol. Biol. 48, 439-447). It is not known if exposure to neat SM vapor, the primary agent used in chemical warfare, will also cause death due to airway casts, and if tPA could be used to improve outcome. ⋯ tPA given via airway more than 6 h after exposure prevented death from lethal SM inhalation, and normalized oxygenation and ventilation defects, thereby rescuing from respiratory distress and failure. Intra-airway tPA should be considered as a life-saving rescue therapy after a significant SM inhalation exposure incident.