Journal of clinical monitoring and computing
-
J Clin Monit Comput · Dec 2016
Multi-parameter vital sign database to assist in alarm optimization for general care units.
Continual vital sign assessment on the general care, medical-surgical floor is expected to provide early indication of patient deterioration and increase the effectiveness of rapid response teams. However, there is concern that continual, multi-parameter vital sign monitoring will produce alarm fatigue. The objective of this study was the development of a methodology to help care teams optimize alarm settings. ⋯ Plots of vital sign distributions in the cloud-hosted database were similar to other large databases published by different authors. The cloud-hosted database can be used to run simulations for various alarm thresholds and annunciation delays to predict the total alarm burden experienced by nursing staff. This methodology might, in the future, be used to help reduce alarm fatigue without sacrificing the ability to continually monitor all vital signs.
-
J Clin Monit Comput · Dec 2016
Editorial CommentCardiac output monitoring: less invasiveness, less accuracy?
-
J Clin Monit Comput · Dec 2016
Randomized Controlled TrialEvaluation of the brain anaesthesia response monitor during anaesthesia for cardiac surgery: a double-blind, randomised controlled trial using two doses of fentanyl.
The brain anaesthesia response (BAR) monitor uses a method of EEG analysis, based on a model of brain electrical activity, to monitor the cerebral response to anaesthetic and sedative agents via two indices, composite cortical state (CCS) and cortical input (CI). It was hypothesised that CCS would respond to the hypnotic component of anaesthesia and CI would differentiate between two groups of patients receiving different doses of fentanyl. Twenty-five patients scheduled to undergo elective first-time coronary artery bypass graft surgery were randomised to receive a total fentanyl dose of either 12 μg/kg (fentanyl low dose, FLD) or 24 μg/kg (fentanyl moderate dose, FMD), both administered in two divided doses. ⋯ Following the first dose of fentanyl, CI, CCS and BIS decreased in both groups. Following the second dose of fentanyl, there was a significant reduction in CI in the FLD group but not the FMD group, with no significant change found for BIS or CCS in either group. The BAR monitor demonstrates the potential to monitor the level of hypnosis following anaesthesia induction with propofol via the CCS index and to facilitate the titration of fentanyl as a component of balanced anaesthesia via the CI index.
-
J Clin Monit Comput · Dec 2016
Prediction of hemodynamic reactivity using dynamic variations of Analgesia/Nociception Index (∆ANI).
The Analgesia/Nociception Index (ANI), a 0-100 non-invasive index calculated from heart rate variability, reflects the analgesia/nociception balance during general anesthesia. We hypothesized that dynamic variations of ANI (∆ANI) would provide better performance than static values to predict hemodynamic reactivity during desflurane/remifentanil general anesthesia. One hundred and twenty-eight patients undergoing ear-nose-throat or lower limb orthopedic surgery were analyzed in this prospective observational study. ⋯ A ∆ANI threshold of -19 % predicts hemodynamic reactivity with 85 % [95 % CI 77-91] sensitivity and 85 % [95 % CI 81-89] specificity. Dynamic variations of ANI provide better performance than static values to predict hemodynamic reactivity during desflurane/remifentanil general anesthesia. These findings may be of interest for the individual adaptation of remifentanil doses guided by ∆ANI during general anesthesia, although this remains to be demonstrated.