Journal of clinical monitoring and computing
-
J Clin Monit Comput · Feb 2020
Randomized Controlled TrialIntraoperative reduction of vasopressors using processed electroencephalographic monitoring in patients undergoing elective cardiac surgery: a randomized clinical trial.
Intraoperative vasopressor and fluid application are common strategies against hypotension. Use of processed electroencephalographic monitoring (pEEG) may reduce vasopressor application, a known risk factor for organ dysfunction, in elective cardiac surgery patients. Randomized single-centre clinical trial at Jena University Hospital. ⋯ Overall postoperative delirium risk was 16.4% without differences among the groups. Adverse events-sudden movement/coughing, perspiration or hypertension-occurred more often with visible-NT, while one blinded-NT patient experienced intraoperative awareness. Titration of depth of anesthesia in elective cardiac surgery patients using pEEG allows to reduce application of norepinephrine.
-
J Clin Monit Comput · Feb 2020
Effect of transpulmonary pressure-guided positive end-expiratory pressure titration on lung injury in pigs with acute respiratory distress syndrome.
To investigate the effect of positive end-expiratory pressure (PEEP) guided by transpulmonary pressure or with maximum oxygenation-directed PEEP on lung injury in a porcine model of acute respiratory distress syndrome (ARDS). The porcine model of ARDS was induced in 12 standard pigs by intratracheal infusion with normal saline. The pigs were then randomly divided into two groups who were ventilated with the lung-protective strategy of low tidal volume (VT) (6 ml/kg), using different methods to titrate PEEP level: transpulmonary pressure (TP group; n = 6) or maximum oxygenation (MO group; n = 6). ⋯ The pulmonary vascular permeability index and the extravascular lung water index in the TP group were significantly lower than those in the MO group (P < 0.05). The TP group had a lower lung wet to dry weight ratio, lung injury score, and MPO, TNF-, and IL-8 concentrations than the MO group (P < 0.05). In summary, in a pig model of ARDS, ventilation with low VT and transpulmonary pressure-guided PEEP adjustment was associated with improved compliance, reduced dead space ventilation, increased cardiac output, and relieved lung injury, as compared to maximum oxygenation-guide PEEP adjustment.
-
J Clin Monit Comput · Feb 2020
Comparative StudyComparison of the venous-arterial CO2 to arterial-venous O2 content difference ratio with the venous-arterial CO2 gradient for the predictability of adverse outcomes after cardiac surgery.
This study aimed to compare the prognostic performance of the ratio of mixed and central venous-arterial CO2 tension difference to arterial-venous O2 content difference (Pv-aCO2/Ca-vO2 and Pcv-aCO2/Ca-cvO2, respectively) with that of the mixed and central venous-to-arterial carbon dioxide gradient (Pv-aCO2 and Pcv-aCO2, respectively) for adverse events after cardiac surgery. One hundred and ten patients undergoing cardiac surgery with cardiopulmonary bypass were enrolled. After catheter insertion, three blood samples were withdrawn simultaneously through arterial pressure, central venous, and pulmonary artery catheters, before and at the end of the operation, and preoperative and postoperative values were determined. ⋯ However, postoperative Pv-aCO2 was the best predictor of MOMM (area under the curve [AUC]: 0.804; 95% confidence interval [CI] 0.688-0.921), at a 5.1-mmHg cut-off, sensitivity was 76.0%, and specificity was 74.1%. Multivariate analysis revealed that postoperative Pv-aCO2 was an independent predictor of MOMM (odds ratio [OR]: 1.42, 95% CI 1.01-2.00, p = 0.046) and prolonged ICU stay (OR: 1.45, 95% CI 1.05-2.01, p = 0.024). Pv-aCO2 at the end of cardiac surgery was a better predictor of postoperative complications than Pv-aCO2/Ca-vO2 and Pcv-aCO2/Ca-cvO2.
-
J Clin Monit Comput · Feb 2020
Forehead electrodes sufficiently detect propofol-induced slow waves for the assessment of brain function after cardiac arrest.
In a recent study, we proposed a novel method to evaluate hypoxic ischemic encephalopathy (HIE) by assessing propofol-induced changes in the 19-channel electroencephalogram (EEG). The study suggested that patients with HIE are unable to generate EEG slow waves during propofol anesthesia 48 h after cardiac arrest (CA). Since a low number of electrodes would make the method clinically more practical, we now investigated whether our results received with a full EEG cap could be reproduced using only forehead electrodes. ⋯ The results received with forehead electrodes were similar to those of the full EEG cap. With the experimental pilot study data, the forehead electrodes were as capable as the full EEG cap in capturing the effect of HIE on propofol-induced slow wave activity. The finding offers potential in developing a clinically practical method for the early detection of HIE.