Journal of clinical monitoring and computing
-
J Clin Monit Comput · Apr 2021
Observational StudyOscillometric versus invasive blood pressure measurement in patients with shock: a prospective observational study in the emergency department.
In emergency medicine, blood pressure is often measured by an oscillometric device using an upper arm cuff. However, measurement accuracy of this technique in patients suffering from hypotensive shock has not been sufficiently evaluated. We designed a prospective observational study investigating the accuracy of an oscillometric device in hypotensive patients admitted to the resuscitation area of the emergency department. ⋯ In 64% of readings, values obtained by the upper arm cuff were not able to detect hypotension. Oscillometric blood pressure measurement is not able to reliably detect hypotension in emergency patients. Therefore, direct measurement of blood pressure should be established as soon as possible in patients suffering from shock.
-
J Clin Monit Comput · Apr 2021
Continuous and entirely non-invasive method for cerebrovascular reactivity assessment: technique and implications.
Continuous cerebrovascular reactivity assessment in traumatic brain injury (TBI) has been limited by the need for invasive monitoring of either cerebral physiology or arterial blood pressure (ABP). This restricts the application of continuous measures to the acute phase of care, typically in the intensive care unit. It remains unknown if ongoing impairment of cerebrovascular reactivity occurs in the subacute and long-term phase, and if it drives ongoing morbidity in TBI. ⋯ Recent advances in continuous high-frequency non-invasive ABP measurement, combined with NIRS or rTCD, can be employed to derive continuous and entirely non-invasive cerebrovascular reactivity metrics. Such non-invasive measures can be obtained during any aspect of patient care post-TBI, and even during outpatient follow-up, avoiding classical intermittent techniques and costly neuroimaging based metrics obtained only at specialized centers. This combination of technology and signal analytic techniques creates avenues for future investigation of the long-term consequences of cerebrovascular reactivity, integrating high-frequency non-invasive cerebral physiology, neuroimaging, proteomics and clinical phenotype at various stages post-injury.
-
J Clin Monit Comput · Apr 2021
An effective pressure-flow characterization of respiratory asynchronies in mechanical ventilation.
Ineffective effort during expiration (IEE) occurs when there is a mismatch between the demand of a mechanically ventilated patient and the support delivered by a Mechanical ventilator during the expiration. This work presents a pressure-flow characterization for respiratory asynchronies and validates a machine-learning method, based on the presented characterization, to identify IEEs. 1500 breaths produced by 8 mechanically-ventilated patients were considered: 500 of them were included into the training set and the remaining 1000 into the test set. Each of them was evaluated by 3 experts and classified as either normal, artefact, or containing inspiratory, expiratory, or cycling-off asynchronies. ⋯ The software classified IEEs with sensitivity 0.904, specificity 0.995, accuracy 0.983, positive and negative predictive value 0.963 and 0.986, respectively. The Cohen's kappa is 0.983 (with 95% confidence interval (CI): [0.884, 0.962]). The pressure-flow characterization of respiratory cycles and the monitoring technique proposed in this work automatically identified IEEs in real-time in close agreement with the experts.
-
J Clin Monit Comput · Apr 2021
A physiology-based mathematical model for the selection of appropriate ventilator controls for lung and diaphragm protection.
Mechanical ventilation is used to sustain respiratory function in patients with acute respiratory failure. To aid clinicians in consistently selecting lung- and diaphragm-protective ventilation settings, a physiology-based decision support system is needed. To form the foundation of such a system, a comprehensive physiological model which captures the dynamics of ventilation has been developed. ⋯ Finally, the model is seen to be able to provide robust predictions of esophageal pressure, transpulmonary pressure and blood pH for patient parameters with realistic variability. The LDPV model is a robust physiological model which produces outputs which directly target and reflect the risk of ventilator-induced lung and diaphragm injury. Ventilation and sedation parameters are seen to modulate the model outputs in accordance with what is currently known in literature.