Journal of clinical monitoring and computing
-
J Clin Monit Comput · Oct 2022
Positive end-expiratory pressure individualization guided by continuous end-expiratory lung volume monitoring during laparoscopic surgery.
To determine whether end-expiratory lung volume measured with volumetric capnography (EELVCO2) can individualize positive end-expiratory pressure (PEEP) setting during laparoscopic surgery. We studied patients undergoing laparoscopic surgery subjected to Fowler (F-group; n = 20) or Trendelenburg (T-group; n = 20) positions. EELVCO2 was measured at 0° supine (baseline), during capnoperitoneum (CP) at 0° supine, during CP with Fowler (head up + 20°) or Trendelenburg (head down - 30°) positions and after CP back to 0° supine. ⋯ Breath-by-breath noninvasive EELVCO2 detected changes in lung volume induced by capnoperitoneum and body position and was useful to individualize the level of PEEP during laparoscopy. Trial registry: Clinicaltrials.gov NCT03693352. Protocol started 1st October 2018.
-
J Clin Monit Comput · Oct 2022
Multicenter StudyComparison of a new EMG module, AF-201P, with acceleromyography using the post-tetanic counts during rocuronium-induced deep neuromuscular block: a prospective, multicenter study.
Recent advances in neuromuscular monitors have facilitated the development of a new electromyographic module, AF-201P™. The purpose of this study was to investigate the relationship between post-tetanic counts (PTCs) assessed using the AF-201P™ and the acceleromyographic TOF Watch SX™ during rocuronium-induced deep neuromuscular block. Forty adult patients consented to participate in this study. ⋯ Regression analysis showed no significant difference in PTCs between the two monitors (PTCs measured by the TOF Watch SX™ = 0.78·PTCs measured by AF-201P™ + 0.21, R = 0.56). Bland-Altman analysis also showed acceptable ranges of bias [95% CI] and limits of agreement (0.3 [0.2 to 0.5] and - 4.6 to 5.3) for the PTCs. The new EMG module, AF-201P™, showed reliable PTCs during deep neuromuscular block, as well as the TOF Watch SX™.
-
J Clin Monit Comput · Oct 2022
Non-invasive capnodynamic mixed venous oxygen saturation during major changes in oxygen delivery.
Mixed venous oxygen saturation (SvO2) is an important variable in anesthesia and intensive care but currently requires pulmonary artery catheterization. Recently, non-invasive determination of SvO2 (Capno-SvO2) using capnodynamics has shown good agreement against CO-oximetry in an animal model of modest hemodynamic changes. The purpose of the current study was to validate Capno-SvO2 against CO-oximetry during major alterations in oxygen delivery. ⋯ CO-oximetry was comparable to the performance of fiberoptic SvO2 vs. CO-oximetry. Capno-SvO2 appears to be a promising tool for non-invasive SvO2 monitoring.