Journal of clinical monitoring and computing
-
J Clin Monit Comput · Oct 2022
Clinical evaluation of a cutaneous zero-heat-flux thermometer during cardiac surgery.
We evaluated the disposable non-invasive SpotOn™ thermometer relying on the zero-heat-flux technology. We tested the hypothesis that this technology may accurately estimate the core temperature. The primary objective was to compare cutaneous temperature measurements from this device with blood temperatures measured with the pulmonary artery catheter. ⋯ Results from the zero-heat-flux thermometer showed better agreement with the pulmonary artery catheter than the other secondary core thermometers assessed. In conclusion, the SpotOn™ thermometer reliably assessed core temperature during cardiac surgery. It could be considered an alternative for other secondary thermometers in the assessment of core temperature during general anesthesia.
-
J Clin Monit Comput · Oct 2022
A comparison of endotracheal tube compensation techniques for the measurement of respiratory mechanical impedance at low frequencies.
Measurement of respiratory impedance ([Formula: see text]) in intubated patients requires accurate compensation for pressure losses across the endotracheal tube (ETT). In this study, we compared time-domain (TD), frequency-domain (FD) and combined time-/frequency-domain (FT) methods for ETT compensation. We measured total impedance ([Formula: see text]) of a test lung in series with three different ETT sizes, as well as in three intubated porcine subjects. ⋯ The FD and TF compensations yielded estimates of [Formula: see text] with similar accuracies. For the porcine subjects, no significant differences were observed in [Formula: see text] across compensation methods. FD and TF compensation of the ETT may allow for accurate oscillometric estimates of [Formula: see text] in intubated subjects, while avoiding the difficulties associated with direct tracheal pressure measurement.
-
J Clin Monit Comput · Oct 2022
Current trends in anesthetic depth and antinociception monitoring: an international survey.
Current trends in anesthetic depth (i.e., hypnosis) and antinociception monitoring are unclear. We thus aimed to determine contemporary perspectives on monitoring these components of anesthesia during general anesthesia. Participants received and responded anonymously to an internet-based international survey supported by the European Society of Anaesthesiology and Intensive Care. ⋯ Nonetheless, a substantial number of participants were unsure if hypnotic (23%) or antinociception (32%) monitoring were recommended and there was a lack of knowledge (58%) of any published algorithms to titrate hypnotic and/or antinociceptive drugs based on the information provided by the monitors. In conclusion, current trends in European academic centers prioritize anesthesia depth over antinociception monitoring. Despite an agreement among respondents that applying strategies that optimize anesthetic depth and antinociception could improve outcome, there remains a lack of knowledge of appropriate algorithms. Future studies and recommendations should focus on clarifying goal-directed anesthetic strategies and determine their impact on perioperative patient outcome.
-
J Clin Monit Comput · Oct 2022
Evaluation of a new smartphone optical blood pressure application (OptiBP™) in the post-anesthesia care unit: a method comparison study against the non-invasive automatic oscillometric brachial cuff as the reference method.
We compared blood pressure (BP) values obtained with a new optical smartphone application (OptiBP™) with BP values obtained using a non-invasive automatic oscillometric brachial cuff (reference method) during the first 2 h of surveillance in a post-anesthesia care unit in patients after non-cardiac surgery. Three simultaneous BP measurements of both methods were recorded every 30 min over a 2-h period. The agreement between measurements was investigated using Bland-Altman and error grid analyses. ⋯ We observed a good agreement between BP values obtained by the OptiBP™ system and BP values obtained with the reference method. The OptiBP™ system fulfilled the AAMI validation requirements for MAP and DAP and error grid analysis indicated that the vast majority of measurement pairs (≥ 99%) were in risk zones A and B. Trial Registration ClinicalTrials.gov Identifier: NCT04262323.
-
The current grading of facial nerve function is based on subjective impression with the established assessment scale of House and Brackmann (HB). Especially for research a more objective method is needed to lower the interobserver variability to a minimum. We developed a semi-automated grading system based on (facial) surface EMG-data measuring the facial nerve function of 28 patients with vestibular schwannoma surgery. ⋯ Lateralization indices were calculated and multivariant machine learning analysis was performed according to three scenarios [differentiation of normal (1) and slight (2) vs. impaired facial nerve function and classification of HB 1-3 (3)]. The calculated AUC for each scenario showed overall good differentiation capability with a median AUC of 0.72 for scenario 1, 0.91 for scenario 2 and multiclass AUC of 0.74 for scenario 3. This study approach using sEMG and machine learning shows feasibility regarding facial nerve grading in perioperative VS-surgery setting. sEMG may be a viable alternative to House Brackmann regarding objective evaluation of facial function especially for research purposes.