Journal of clinical monitoring and computing
-
J Clin Monit Comput · Aug 2022
Randomized Controlled TrialEffect of pressure-controlled ventilation-volume guaranteed mode combined with individualized positive end-expiratory pressure on respiratory mechanics, oxygenation and lung injury in patients undergoing laparoscopic surgery in Trendelenburg position.
The study aimed to investigate the efficacy of PCV-VG combined with individual PEEP during laparoscopic surgery in the Trendelenburg position. 120 patients were randomly divided into four groups: VF group (VCV plus 5cmH2O PEEP), PF group (PCV-VG plus 5cmH2O PEEP), VI group (VCV plus individual PEEP), and PI group (PCV-VG plus individual PEEP). Pmean, Ppeak, Cdyn, PaO2/FiO2, VD/VT, A-aDO2 and Qs/Qt were recorded at T1 (15 min after the induction of anesthesia), T2 (60 min after pneumoperitoneum), and T3 (5 min at the end of anesthesia). The CC16 and IL-6 were measured at T1 and T3. ⋯ At T3, the concentration of CC16 in PI group was lower compared with other groups, and IL-6 level of PI group was decreased than that in VF and VI group. In conclusion, the patients who underwent laparoscopic surgery, PCV-VG combined with individual PEEP produced favorable lung mechanics and oxygenation, and thus reducing inflammatory response and lung injury. Clinical Trial registry: chictr.org. identifier: ChiCTR-2100044928.
-
J Clin Monit Comput · Aug 2022
Ability of short-time low peep challenge to predict fluid responsiveness in mechanically ventilated patients in the intensive care.
Short-time low PEEP challenge (SLPC, application of additional 5 cmH2O PEEP to patients for 30 s) is a novel functional hemodynamic test presented in the literature. We hypothesized that SLPC could predict fluid responsiveness better than stroke volume variation (SVV) in mechanically ventilated intensive care patients. Heart rate, mean arterial pressure, stroke volume index (SVI) and SVV were recorded before SLPC, during SLPC and before and after 500 mL fluid loading. ⋯ The ROC-AUC of SVIΔ%-SLPC was significantly higher than that of SVV (p = 0.0045). The best cut-off value of SVIΔ%-SLPC was 7.5% with 90% sensitivity and 96% specificity. The percentage change in SVI during SLPC predicts fluid responsiveness in intensive care patients who are ventilated with low tidal volumes; the sensitivity and specificity values are higher than those of SVV.
-
J Clin Monit Comput · Aug 2022
Reliability of a computational model for evaluating thoracoabdominal mobility in newborns: a cross-sectional study.
The present study aimed to verify the inter and intra-examiner reliability of an interactive custom-made MATLAB® App for bio-photogrammetric analysis of thoracoabdominal mobility in newborns and compare the respiratory rate (RR) results between the automatic MATLAB® App and its manual counterpart. This is a cross-sectional study conducted in 27 healthy newborns of both sexes (gestational age between 37 and 41 weeks and up to 72 h of life) who did not cry during data acquisition. Chest and abdominal areas of the subjects in the supine position were analyzed through 60 s videos, totaling 30,714 photograms. ⋯ Reliability was excellent for intra (ICC 0.81-0.96) and inter-examiner correlations (ICC 0.84-0.99) between the chest and abdominal areas, in both inspiration and expiration, with no differences between them. Evaluation of newborns' thoracoabdominal mobility using the custom-made MATLAB® App for bio-photogrammetric analysis exhibited good to excellent intra- and inter-examiner reliability and an excellent correlation between manual and automatic models for measuring RR. Thus, it proved to be an objective and practical tool for bedside thoracoabdominal mobility assessment in different clinical situations involving neonatal care.
-
J Clin Monit Comput · Aug 2022
Multicenter StudyPrediction of blood lactate values in critically ill patients: a retrospective multi-center cohort study.
Elevations in initially obtained serum lactate levels are strong predictors of mortality in critically ill patients. Identifying patients whose serum lactate levels are more likely to increase can alert physicians to intensify care and guide them in the frequency of tending the blood test. We investigate whether machine learning models can predict subsequent serum lactate changes. ⋯ The LSTM models were able to predict deterioration of serum lactate values of MIMIC-III patients with an AUC of 0.77 (95% CI 0.762-0.771) for the normal group, 0.77 (95% CI 0.768-0.772) for the mild group, and 0.85 (95% CI 0.840-0.851) for the severe group, with only a slightly lower performance in the external validation. The LSTM demonstrated good discrimination of patients who had deterioration in serum lactate levels. Clinical studies are needed to evaluate whether utilization of a clinical decision support tool based on these results could positively impact decision-making and patient outcomes.
-
J Clin Monit Comput · Aug 2022
ReviewThe use of a vascular occlusion test combined with near-infrared spectroscopy in perioperative care: a systematic review.
In the perioperative phase oxygen delivery and consumption can be influenced by different factors, i.e. type of surgery, anesthetic and cardiovascular drugs, or fluids. By combining near-infrared spectroscopy (NIRS) monitoring of regional tissue oxygen saturation (StO2) with an ischemic provocation test, the vascular occlusion test (VOT), local tissue oxygen consumption and vascular reactivity at the microcirculatory level can be assessed. This systematic review aims to give an overview of the clinical information that VOT-derived NIRS values can provide in the perioperative period. ⋯ Additionally, deviations in VOT-derived NIRS values are also associated with adverse patients' outcomes, such as postoperative complications, prolonged mechanical ventilation and prolonged hospital length of stay. However, given the variability in VOT-derived NIRS values, clinical applicability remains elusive. Future clinical interventional trials might provide additional insight into the potential of VOT associated with NIRS to optimize perioperative care by targeting specific interventions to optimize the function of the microvasculature.