Journal of clinical monitoring and computing
-
J Clin Monit Comput · Oct 2024
A non-invasive method to monitor respiratory muscle effort during mechanical ventilation.
This study introduces a method to non-invasively and automatically quantify respiratory muscle effort (Pmus) during mechanical ventilation (MV). The methodology hinges on numerically solving the respiratory system's equation of motion, utilizing measurements of airway pressure (Paw) and airflow (Faw). To evaluate the technique's effectiveness, Pmus was correlated with expected physiological responses. In volume-control (VC) mode, where tidal volume (VT) is pre-determined, Pmus is expected to be linked to Paw fluctuations. In contrast, during pressure-control (PC) mode, where Paw is held constant, Pmus should correlate with VT variations. ⋯ The study supports the feasibility of assessing respiratory effort during MV non-invasively through airway signal analysis. Further research is warranted to validate this method and investigate its clinical applications.
-
J Clin Monit Comput · Oct 2024
Observational StudyMechanical power during robotic-assisted laparoscopic prostatectomy: an observational study.
Robotic-assisted laparoscopic radical prostatectomy (RALP) requires pneumoperitoneum and steep Trendelenburg position. Our aim was to investigate the influence of the combination of pneumoperitoneum and Trendelenburg position on mechanical power and its components during RALP. ⋯ Mechanical power in healthy patients undergoing RALP significantly increased both during the pneumoperitoneum and Trendelenburg position and in supine position after surgery. PEEP always increased mechanical power without ameliorating the respiratory system elastance.
-
J Clin Monit Comput · Oct 2024
EditorialEditorial comment to intraoperative haemodynamic monitoring and management of adults having non-cardiac surgery: guidelines of the German society of Anaesthesiology and Intensive care medicine in collaboration with the German Association of the Scientific medical societies.
-
J Clin Monit Comput · Oct 2024
Comparative Study Observational StudyAgreement between three noninvasive temperature monitoring devices during spinal anaesthesia for caesarean delivery: a prospective observational study.
Hypothermia during obstetric spinal anaesthesia is a common and important problem, yet temperature monitoring is often not performed due to the lack of a suitable, cost-effective monitor. This study aimed to compare a noninvasive core temperature monitor with two readily available peripheral temperature monitors during obstetric spinal anaesthesia. We undertook a prospective observational study including elective and emergency caesarean deliveries, to determine the agreement between affordable reusable surface temperature monitors (Welch Allyn SureTemp® Plus oral thermometer and the Braun 3-in-1 No Touch infrared thermometer) and the Dräger T-core© (using dual-sensor heat flux technology), in detecting thermoregulatory changes during obstetric spinal anaesthesia. ⋯ Error grid analysis highlighted a large amount of clinical disagreement between methods. While monitoring of core temperature during obstetric spinal anaesthesia is clinically important, agreement between monitors was below clinically acceptable limits. Future research with gold-standard temperature monitors and exploration of causes of sensor divergence is needed.
-
This study retrospectively examined the hemodynamic effects of passive leg raising (PLR) in mechanically ventilated patients during fluid removal before spontaneous breathing trials. In previous studies, we noticed varying cardiac responses after PLR completion, particularly in positive tests. Using a bioreactance monitor, we recorded and analyzed hemodynamic parameters, including stroke volume and cardiac index (CI), before and after PLR in post-acute ICU patients. ⋯ This effect could be due to a combination of autotransfusion and sympathetic activation affecting venous return and vascular tone. Further research in larger cohorts and more comprehensive hemodynamic assessments are warranted to validate these observations and elucidate the possible underlying mechanisms. The Fluid unLoading On Weaning (FLOW) study was prospectively registered under the ID NCT04496583 on 2020-07-29 at ClinicalTrials.gov.