Journal of clinical monitoring and computing
-
This study retrospectively examined the hemodynamic effects of passive leg raising (PLR) in mechanically ventilated patients during fluid removal before spontaneous breathing trials. In previous studies, we noticed varying cardiac responses after PLR completion, particularly in positive tests. Using a bioreactance monitor, we recorded and analyzed hemodynamic parameters, including stroke volume and cardiac index (CI), before and after PLR in post-acute ICU patients. ⋯ This effect could be due to a combination of autotransfusion and sympathetic activation affecting venous return and vascular tone. Further research in larger cohorts and more comprehensive hemodynamic assessments are warranted to validate these observations and elucidate the possible underlying mechanisms. The Fluid unLoading On Weaning (FLOW) study was prospectively registered under the ID NCT04496583 on 2020-07-29 at ClinicalTrials.gov.
-
J Clin Monit Comput · Oct 2024
Video-based automatic hand hygiene detection for operating rooms using 3D convolutional neural networks.
Hand hygiene among anesthesia personnel is important to prevent hospital-acquired infections in operating rooms; however, an efficient monitoring system remains elusive. In this study, we leverage a deep learning approach based on operating room videos to detect alcohol-based hand hygiene actions of anesthesia providers. Videos were collected over a period of four months from November, 2018 to February, 2019, at a single operating room. Additional data was simulated and added to it. ⋯ Optical flow was calculated and utilized as an additional input modality. Accuracy, sensitivity and specificity were evaluated hand hygiene detection. Evaluations of the binary classification of hand-hygiene actions revealed an accuracy of 0.88, a sensitivity of 0.78, a specificity of 0.93, and an area under the operating curve (AUC) of 0.91. A 3D CNN-based algorithm was developed for the detection of hand hygiene action. The deep learning approach has the potential to be applied in practical clinical scenarios providing continuous surveillance in a cost-effective way.
-
J Clin Monit Comput · Oct 2024
Review Practice GuidelineIntraoperative haemodynamic monitoring and management of adults having non-cardiac surgery: Guidelines of the German Society of Anaesthesiology and Intensive Care Medicine in collaboration with the German Association of the Scientific Medical Societies.
Haemodynamic monitoring and management are cornerstones of perioperative care. The goal of haemodynamic management is to maintain organ function by ensuring adequate perfusion pressure, blood flow, and oxygen delivery. We here present guidelines on "Intraoperative haemodynamic monitoring and management of adults having non-cardiac surgery" that were prepared by 18 experts on behalf of the German Society of Anaesthesiology and Intensive Care Medicine (Deutsche Gesellschaft für Anästhesiologie und lntensivmedizin; DGAI).
-
J Clin Monit Comput · Oct 2024
Randomized Controlled Trial Comparative StudyComparison of automated and manual control methods in minimal flow anesthesia.
New-generation anesthesia machines administer inhalation anesthetics and automatically control the fresh gas flow (FGF) rate. This study compared the administration of minimal flow anesthesia (MFA) using the automatically controlled anesthesia (ACA) module of the Mindray A9 (Shenzhen, China) anesthesia machine versus manual control by an anesthesiologist. ⋯ The ACA mode was more advantageous than the MCA mode, reaching target AA concentrations faster and requiring fewer adjustments to achieve a constant depth of anesthesia.
-
J Clin Monit Comput · Oct 2024
ReviewIntraoperative somatosensory evoked potential (SEP) monitoring: an updated position statement by the American Society of Neurophysiological Monitoring.
Somatosensory evoked potentials (SEPs) are used to assess the functional status of somatosensory pathways during surgical procedures and can help protect patients' neurological integrity intraoperatively. This is a position statement on intraoperative SEP monitoring from the American Society of Neurophysiological Monitoring (ASNM) and updates prior ASNM position statements on SEPs from the years 2005 and 2010. This position statement is endorsed by ASNM and serves as an educational service to the neurophysiological community on the recommended use of SEPs as a neurophysiological monitoring tool. It presents the rationale for SEP utilization and its clinical applications. It also covers the relevant anatomy, technical methodology for setup and signal acquisition, signal interpretation, anesthesia and physiological considerations, and documentation and credentialing requirements to optimize SEP monitoring to aid in protecting the nervous system during surgery.