Journal of clinical monitoring and computing
-
J Clin Monit Comput · Feb 2018
Comparative Study Clinical Trial Observational StudyComparison of non-invasive blood pressure monitoring using modified arterial applanation tonometry with intra-arterial measurement.
Intermittent non-invasive blood pressure measurement with tourniquets is slow, can cause nerve and skin damage, and interferes with other measurements. Invasive measurement cannot be safely used in all conditions. Modified arterial tonometry may be an alternative for fast and continuous measurement. ⋯ The readings for diastolic pressures were inside the limits recommended by AAMI. Movement increased the failure rate significantly (p < 0.001). Thus, arterial tonometry is not an appropriate replacement for invasive blood pressure measurement in these patients.
-
J Clin Monit Comput · Feb 2018
Cardiorespiratory instability in monitored step-down unit patients: using cluster analysis to identify patterns of change.
Cardiorespiratory instability (CRI) in monitored step-down unit (SDU) patients has a variety of etiologies, and likely manifests in patterns of vital signs (VS) changes. We explored use of clustering techniques to identify patterns in the initial CRI epoch (CRI1; first exceedances of VS beyond stability thresholds after SDU admission) of unstable patients, and inter-cluster differences in admission characteristics and outcomes. Continuous noninvasive monitoring of heart rate (HR), respiratory rate (RR), and pulse oximetry (SpO2) were sampled at 1/20 Hz. ⋯ Three different clusters of VS presentations for CRI1 were identified. Clusters varied on age, number of comorbidities and hospital length of stay. Future study is needed to determine if there are common physiologic underpinnings of VS clusters which might inform clinical decision-making when CRI first manifests.
-
J Clin Monit Comput · Feb 2018
Influence of the marvelous™ three-way stopcock on the natural frequency and damping coefficient in blood pressure transducer kits.
Two types of Planecta™ ports are commonly used as sampling ports in blood pressure transducer kits: a flat-type port (FTP) and a port with a three-way stopcock (PTS). Recently, a new type of three-way stopcock (Marvelous™) has been released as a Planecta™ counterpart, but its effects on the frequency characteristics and reliability of blood pressure monitoring have not been investigated. We assessed the influence of the Marvelous™ stopcock on the frequency characteristics of the pressure transducer kit. ⋯ Plotting the data on a Gardner chart revealed that the changes fell within the adequate dynamic response region, indicating they were within the allowable range. Insertion of Marvelous™ stopcocks slightly affects the natural frequency of the pressure transducer kit, similar to inserting a PTS. The results indicate that the Marvelous™ stopcock is useful for accurate monitoring of arterial blood pressure, and may be recommended when insertion of two or more closed-loop blood sampling systems is necessary.
-
J Clin Monit Comput · Feb 2018
Assessing nitrous oxide effect using electroencephalographically-based depth of anesthesia measures cortical state and cortical input.
Existing electroencephalography (EEG) based depth of anesthesia monitors cannot reliably track sedative or anesthetic states during n-methyl-D-aspartate (NMDA) receptor antagonist based anesthesia with ketamine or nitrous oxide (N2O). Here, a physiologically-motivated depth of anesthesia monitoring algorithm based on autoregressive-moving-average (ARMA) modeling and derivative measures of interest, Cortical State (CS) and Cortical Input (CI), is retrospectively applied in an exploratory manner to the NMDA receptor antagonist N2O, an adjuvant anesthetic gas used in clinical practice. Composite Cortical State (CCS) and Composite Cortical State distance (CCSd), two new modifications of CS, along with CS and CI were evaluated on electroencephalographic (EEG) data of healthy control individuals undergoing N2O inhalation up to equilibrated peak gas concentrations of 20, 40 or 60% N2O/O2. ⋯ These results indicate that, contrary to previous depth of anesthesia monitoring measures, the CS, CCS, and especially CCSd measures derived from frontal EEG are potentially useful for differentiating gas concentration and responsiveness levels in people under N2O. On the other hand, determining the utility of CI in this regard will require larger sample sizes and potentially higher gas concentrations. Future work will assess the sensitivity of CS-based and CI measures to other anesthetics and their utility in a clinical environment.
-
J Clin Monit Comput · Feb 2018
ADARRI: a novel method to detect spurious R-peaks in the electrocardiogram for heart rate variability analysis in the intensive care unit.
We developed a simple and fully automated method for detecting artifacts in the R-R interval (RRI) time series of the ECG that is tailored to the intensive care unit (ICU) setting. From ECG recordings of 50 adult ICU-subjects we selected 60 epochs with valid R-peak detections and 60 epochs containing artifacts leading to missed or false positive R-peak detections. Next, we calculated the absolute value of the difference between two adjacent RRIs (adRRI), and obtained the empirical probability distributions of adRRI values for valid R-peaks and artifacts. ⋯ Our method showed superior performance for detecting artifacts with sensitivity 100%, specificity 99%, precision 99%, positive likelihood ratio of 100 and negative likelihood ratio <0.001 compared to Berntson's and Clifford's method with a sensitivity, specificity, precision and positive and negative likelihood ratio of 99%, 78%, 82%, 4.5, 0.013 for Berntson's method and 55%, 98%, 96%, 27.5, 0.460 for Clifford's method, respectively. A novel algorithm using a patient-independent threshold derived from the distribution of adRRI values in ICU ECG data identifies artifacts accurately, and outperforms two other methods in common use. Furthermore, the threshold was calculated based on real data from critically ill patients and the algorithm is easy to implement.