Journal of clinical monitoring and computing
-
J Clin Monit Comput · Dec 2017
Comparative StudyComparison of pneumotachography and anemometery for flow measurement during mechanical ventilation with volatile anesthetics.
Volatile anesthetics alter the physical properties of inhaled gases, such as density and viscosity. We hypothesized that the use of these agents during mechanical ventilation would yield systematic biases in estimates of flow ([Formula: see text]) and tidal volume (V T) for two commonly used flowmeters: the pneumotachograph (PNT), which measures a differential pressure across a calibrated resistive element, and the hot-wire anemometer (HWA), which operates based on convective heat transfer from a current-carrying wire to a flowing gas. We measured [Formula: see text] during ventilation of a spring-loaded mechanical test lung, using both the PNT and HWA placed in series at the airway opening. ⋯ A simple compensation factor based on density reduced observed differences between the flowmeters, regardless of the anesthetic or concentration. These data indicate that the choice and concentration of anesthetic agents are primary factors for differences in estimated V T between the PNT and HWA. Such discrepancies may be compensated by accounting for alterations in gas density.
-
J Clin Monit Comput · Dec 2017
Parasympathetic tone variations according to umbilical cord pH at birth: a computerized fetal heart rate variability analysis.
Non-reassuring fetal heart rate tracings reflect an imbalance between the parasympathetic and sympathetic nervous systems. In this situation, fetal asphyxia can be suspected and may be confirmed by metabolic measurements at birth like low pH or high base deficit values. The objective of this study was to determine whether fetal asphyxia during labor is related to parasympathetic nervous system activity. ⋯ FSI was measured during the last 30 min of labor before birth and compared between groups. The minimum value of the FSI during the last 30 min before delivery was significantly lower in the group with the lower umbilical cord arterial pH value. In this pilot study during labor, FSI was lower in the group of infants with low arterial pH at birth.
-
J Clin Monit Comput · Dec 2017
Observational StudyApplicability of stroke volume variation in patients of a general intensive care unit: a longitudinal observational study.
Sinus rhythm (SR) and controlled mechanical ventilation (CV) are mandatory for the applicability of respiratory changes of the arterial curve such as stroke volume variation (SVV) to predict fluid-responsiveness. Furthermore, several secondary limitations including tidal volumes <8 mL/kg and SVV-values within the "gray zone" of 9-13% impair prediction of fluid-responsiveness by SVV. Therefore, we investigated the prevalence of these four conditions in general ICU-patients. ⋯ In 9.7% (27/278) of the first measurements and in 12.8% (615/4801) of all measurements the patients did neither have SR nor CV. Only 20 of 278 (7.2%) of the first measurements and 8.2% of all measurements fulfilled both major criteria (CV, SR) and both minor criteria for the applicability of SVV. The applicability of SVV in ICU-patients is limited due to the absence of mandatory criteria during the majority of measurements.
-
J Clin Monit Comput · Dec 2017
Phenylephrine increases near-infrared spectroscopy determined muscle oxygenation in men.
Phenylephrine increases mean arterial pressure (MAP) by enhanced total peripheral resistance (TPR) but near-infrared spectroscopy (NIRS) determined muscle oxygenation (SmO2) increases. We addressed that apparent paradox during supine rest and head-up tilt (HUT). Variables were determined ± phenylephrine in males during supine rest (n = 17) and 40° HUT (n = 7). ⋯ Brachial artery blood flow tended to decrease while SskinO2 together with StibialO2 decreased by 11% (P = 0.026) and 20% (P < 0.001), respectively. Conversely, phenylephrine increased SmO2 (9%) and restored the HUT elicited decrease in SmO2 (by 19%) along with SV (P = 0.02). Phenylephrine reduces skin and bone oxygenation and tends to reduce arm blood flow, suggesting that the increase in SmO2 reflects veno-constriction with consequent centralization of the blood volume.