Journal of clinical monitoring and computing
-
The current standard of care for patients suffering from acute respiratory distress syndrome (ARDS) is ventilation with a tidal volume of 6 ml/kg predicted body weight (PBW), but variability remains in the tidal volumes that are actually used. This study aims to identify patient scenarios for which there is discordance between physicians in choice of tidal volume and positive end-expiratory pressure (PEEP) in ARDS patients. We developed an algorithm based on fuzzy logic for encapsulating the expertise of individual physicians regarding their use of tidal volume and PEEP in ARDS patients. ⋯ Tidal volume variability decreased for SaO₂ > 90 %. Variability in the recommended change in PEEP increased for PEEP > 5 cmH₂O and for SaO₂ near 90 %. Intensivists vary in their management of ARDS patients when peak airway pressures and PEEP are high, suggesting that the current goal of 6 ml/kg PBW may need to be revisited under these conditions.
-
J Clin Monit Comput · Jun 2013
Letter Case ReportsIndocyanine green dye administration can cause oxygen desaturation.
-
J Clin Monit Comput · Apr 2013
Non-invasive accurate measurement of arterial PCO2 in a pediatric animal model.
The PCO2 in arterial blood (PaCO2) is a good parameter for monitoring ventilation and acid-base changes in ventilated patients, but its measurement is invasive and difficult to obtain in small children. Attempts have been made to use the partial pressure of CO2 in end-tidal gas (PETCO2), as a noninvasive surrogate for PaCO2. Studies have revealed that, unfortunately, the differences between PETCO2 and PaCO2 are too variable to be clinically useful. ⋯ The PET-aCO2 of all samples was (mean ± 1.96 SD) 0.4 ± 2.7 mmHg. Our study demonstrates that, in ventilated juvenile animals, end-inspiratory rebreathing maintains PET-aCO2 to what would be a clinically useful range. If verified clinically, this approach could open the way for non-invasive monitoring of arterial PCO2 in critically ill patients.
-
J Clin Monit Comput · Apr 2013
ReviewShedding light on mitochondrial function by real time monitoring of NADH fluorescence: II: human studies.
Monitoring the mitochondrial function, alone or together with microcirculatory blood flow, volume and hemoglobin oxygenation in patients, is very rare. The integrity of microcirculation and mitochondrial activity is a key factor in keeping normal cellular activities. Many pathological conditions in patients are directly or indirectly related to dysfunction of the mitochondria. ⋯ In part I, the detailed technological aspects of NADH monitoring were described. Typical results accumulated in our studies since the mid-1990s are presented as well. We were able to apply the fiber optic based NADH fluorometry to several organs monitored in vivo in patients under various pathophysiological conditions.
-
J Clin Monit Comput · Apr 2013
Comparative StudyComparing hemodynamic effects with three different measurement devices, of two methods of external leg compression versus passive leg raising in patients after cardiac surgery.
External leg compression (ELC) may increase cardiac output (CO) in fluid-responsive patients like passive leg raising (PLR). We compared the hemodynamic effects of two methods of ELC and PLR measured by thermodilution (COtd), pressure curve analysis Modelflow™ (COmf) and ultra-sound HemoSonic™ (COhs), to evaluate the method with the greatest hemodynamic effect and the most accurate less invasive method to measure that effect. We compared hemodynamic effects of two different ELC methods (circular, A (n = 16), vs. wide, B (n = 13), bandages inflated to 30 cm H2O for 15 min) with PLR prior to each ELC method, in 29 post-operative cardiac surgical patients. ⋯ Bland-Altman and polar plots showed lower limits of agreement with changes in COtd for COmf than for COhs. The circular leg compression increases CO more than bandage compression, and is able to increase CO as in PLR. The less invasive Modelflow™ can detect these changes reasonably well.