Journal of clinical monitoring and computing
-
J Clin Monit Comput · Dec 2012
Combination of continuous pulse pressure variation monitoring and cardiac filling pressure to predict fluid responsiveness.
To assess if combining central venous pressure (CVP) and/or pulmonary capillary wedge pressure (PCWP) information with arterial pulse pressure variation can increase the ability to predict fluid responsiveness in patients under general anesthesia. This study is a retrospective analysis of patients scheduled for coronary artery bypass surgery and monitored with a pulmonary artery catheter who underwent a volume expansion after induction of general anesthesia. Among the 46 patients studied, 31 were responders to volume expansion. ⋯ Combining information on right and/or left cardiac filling pressures with PPV did not increase the ability to predict whether a patient will be a responder or a non-responder to volume expansion. The ability to identify a potentially fluid responsive patient was no better using PPV plus cardiac filling pressures when compared to using PPV alone. Therefore, if PPV values are being monitored in a patient, CVP and PCWP values do not provide additional information to predict fluid responsiveness.
-
The pulmonary artery catheter (PAC) has been widely used for monitoring of critically ill patients over the years, but with advances in less invasive monitoring techniques, notably echocardiography, there are fewer indications for PAC insertion. Nevertheless, the PAC provides simultaneous monitoring of pulmonary artery pressures, cardiac filling, cardiac output and mixed venous oxygen saturation, and still has an important role in complex cases. Adequate and continued training are required to ensure that PAC-derived data are correctly interpreted and applied.
-
The transpulmonary thermodilution technique (TPTD) is a safe, multi-parametric advanced cardiopulmonary monitoring technique that provides important parameters required for making decisions in critically ill patients. The TPTD provides more reliable indicators of preload than filling pressures, the unique measurement of extravascular lung water (EVLW) and comparable accuracy in measuring cardiac output (CO). Intermittent measurement of the CO by TPTD when coupled with pulse contour analysis, offer automatic calibration of continuous CO, as well as accurate assessment of volumetric preload, fluid responsiveness and EVLW. TPTD-guided algorithms have been shown to improve the management of high-risk surgical and critically ill patients.
-
J Clin Monit Comput · Oct 2012
ReviewBedside echocardiography in critically ill patients: a true hemodynamic monitoring tool.
Echocardiography is a versatile, accurate and noninvasive tool suited to examination of shocked patients. Since the 1980s, intensive care practitioners have used ultrasound widely for hemodynamic evaluation and for cardiac anatomy visualization. ⋯ We will also report the main indications of echocardiography and the corresponding parameters. Finally, we will indicate educational programs and define minimum training that enable self-sufficiency.