Journal of clinical monitoring and computing
-
J Clin Monit Comput · Dec 2023
Randomized Controlled TrialComparative analysis of signal accuracy of three SpO2 monitors during motion and low perfusion conditions.
To compare pulse oximetry performance during simulated conditions of motion and low perfusion in three commercially available devices: GE HealthCare CARESCAPE ONE TruSignal SpO2 Parameter, Masimo RADICAL-7 and Medtronic Nellcor PM1000N. After IRB approval, 28 healthy adult volunteers were randomly assigned to the motion group (N = 14) or low perfusion (N = 14) group. Pulse oximeters were placed on the test and control hands using random assignment of digits 2-5. ⋯ SpO2 measurement accuracy degraded for all three devices during motion as compared to non-motion. Accuracy also degraded during normal to low, very low, or ultra low perfusion and was more pronounced compared to the changes observed during simulated motion. While some statistically significant differences in individual measurements were found, the clinical relevance of these differences requires further study.
-
J Clin Monit Comput · Dec 2023
Randomized Controlled Trial Observational StudyComparison of the effects of dexmedetomidine and propofol on the cardiovascular autonomic nervous system during spinal anesthesia: preliminary randomized controlled observational study.
Spinal anesthesia induces sympatholysis and is usually combined with dexmedetomidine or propofol which induce different hemodynamic changes. The purpose of this study was to compare the effect on autonomic nervous system between dexmedetomidine and propofol combined with spinal anesthesia. Patients aged 20-65 undergoing elective surgery under spinal anesthesia were randomly assigned to dexmedetomidine or propofol group. ⋯ The LF/HF ratio decreased in the dexmedetomidine group at T3. Dexmedetomidine showed slower heart rate and higher blood pressure than propofol when combined with spinal anesthesia, however, dexmedetomidine and propofol exhibited similar trends in HRV dynamics. Compared with the baseline within each group, both agents decreased LF, but only dexmedetomidine increased HF and decreased in the LF/HF ratio significantly.
-
J Clin Monit Comput · Dec 2023
Observational StudyCapnodynamic monitoring of lung volume and pulmonary blood flow during alveolar recruitment: a prospective observational study in postoperative cardiac patients.
Alveolar recruitment manoeuvres may mitigate ventilation and perfusion mismatch after cardiac surgery. Monitoring the efficacy of recruitment manoeuvres should provide concurrent information on pulmonary and cardiac changes. This study in postoperative cardiac patients applied capnodynamic monitoring of changes in end-expiratory lung volume and effective pulmonary blood flow. ⋯ Changes in oxygen delivery index after lung recruitment were correlated to changes in end-expiratory lung volume (r = 0.39, 95% CI 0.16-0.59, p = 0.002) and effective pulmonary blood flow (r = 0.60, 95% CI 0.41-0.74, p < 0.001). Capnodynamic monitoring of end-expiratory lung volume and effective pulmonary blood flow early in postoperative cardiac patients identified a characteristic parallel increase in both lung volume and perfusion after the recruitment manoeuvre in patients with a significant increase in oxygen delivery. Trial registration This study was registered on ClinicalTrials.gov (NCT05082168, 18th of October 2021).
-
J Clin Monit Comput · Dec 2023
A technique to measure tidal volume during noninvasive respiratory support by continuous-flow helmet CPAP.
The coronavirus disease 2019 (COVID-19) pandemic has promoted the use of helmet continuous positive airway pressure (CPAP) for noninvasive respiratory support in hypoxic respiratory failure patients, despite the lack of tidal volume monitoring. We evaluated a novel technique designed to measure tidal volume during noninvasive continuous-flow helmet CPAP. ⋯ Tidal volume measurement is feasible and accurate during bench continuous-flow helmet CPAP therapy by the analysis of the outflow signal, provided that helmet inflow is adequate to match the patient's inspiratory efforts. Insufficient inflow resulted in tidal volume underestimation. In vivo data are needed to confirm these findings.
-
J Clin Monit Comput · Dec 2023
True intratracheal oxygen concentration delivered by SentriO Oxy™ masks under various respiratory conditions: a bench study.
SentriO Oxy™ is a newly available, Food and Drug Administration-approved oxygenation mask system that provides high oxygenation, even on low-flow (5-10 L/min) oxygen. This study aimed to accurately measure the intratracheal fraction of inspired oxygen (FiO2) using SentriO Oxy™ masks under relatively low oxygen flow rates. A manikin-ventilator-test lung simulation system was used. ⋯ In addition, using linear regression analysis, we found that TV, RR, and oxygen flow were all significant factors influencing the measured FiO2. Our experiment proposed two prediction equations considering the oxygen flow rate, TV, and RR. The results of our study may provide information and prediction of FiO2 for clinicians to use SentriO Oxy™ masks during sedative anesthetic procedures under low oxygen flow rates.