Nature neuroscience
-
Synaptic plasticity provides the basis for most models of learning, memory and development in neural circuits. To generate realistic results, synapse-specific Hebbian forms of plasticity, such as long-term potentiation and depression, must be augmented by global processes that regulate overall levels of neuronal and network activity. ⋯ Recent experimental results suggest several novel mechanisms for regulating levels of activity in conjunction with Hebbian synaptic modification. We review three of them-synaptic scaling, spike-timing dependent plasticity and synaptic redistribution-and discuss their functional implications.
-
Blood-oxygenation level-dependent (BOLD) functional magnetic resonance imaging (fMRI) is an important tool for localizing brain functions in vivo. However, the ability of BOLD fMRI to map cortical columnar structures is highly controversial, as the ultimate functional specificity of BOLD remains unknown. ⋯ In functional imaging, the initial BOLD signal decrease accurately labeled individual iso-orientation columns. In contrast, the delayed positive BOLD changes indicated the pattern of overall activation in the visual cortex, but were less suited to discriminate active from inactive columns.
-
Information theory quantifies how much information a neural response carries about the stimulus. This can be compared to the information transferred in particular models of the stimulus-response function and to maximum possible information transfer. Such comparisons are crucial because they validate assumptions present in any neurophysiological analysis. ⋯ Because these models require specification of spike timing precision, they can reveal which time scales contain information in neural coding. This approach shows that dynamic stimuli can be encoded efficiently by single neurons and that each spike contributes to information transmission. We argue, however, that the data obtained so far do not suggest a temporal code, in which the placement of spikes relative to each other yields additional information.
-
Functional magnetic resonance imaging (fMRI) has become an essential tool for studying human brain function. Here we describe the application of this technique to anesthetized monkeys. ⋯ Under our anesthesia protocol, visual stimulation yielded robust, reproducible, focal activation of the lateral geniculate nucleus (LGN), the primary visual area (V1) and a number of extrastriate visual areas, including areas in the superior temporal sulcus. Similar responses were obtained in alert, behaving monkeys performing a discrimination task.