Nature neuroscience
-
Nature neuroscience · Apr 2007
ReviewChannel, neuronal and clinical function in sodium channelopathies: from genotype to phenotype.
What is the relationship between sodium channel function, neuronal function and clinical status in channelopathies of the nervous system? Given the central role of sodium channels in the generation of neuronal activity, channelopathies involving sodium channels might be expected to cause either enhanced sodium channel function and neuronal hyperexcitability associated with positive clinical manifestations such as seizures, or attenuated channel function and neuronal hypoexcitability associated with negative clinical manifestations such as paralysis. In this article, I review observations showing that changes in neuronal function and clinical status associated with channelopathies are not necessarily predictable solely from the altered physiological properties of the mutated channel itself. I discuss evidence showing that cell background acts as a filter that can strongly influence the effects of ion channel mutations.
-
Nature neuroscience · Nov 2002
ReviewConnecting cortex to machines: recent advances in brain interfaces.
Recent technological and scientific advances have generated wide interest in the possibility of creating a brain-machine interface (BMI), particularly as a means to aid paralyzed humans in communication. Advances have been made in detecting neural signals and translating them into command signals that can control devices. ⋯ Additional research findings explore the possibility of using computers to return behaviorally useful feedback information to the cortex. Although significant scientific and technological challenges remain, progress in creating useful human BMIs is accelerating.
-
Since the mid 1980s, there has been a great deal of enthusiasm within both academia and industry about the therapeutic potential of drugs targeting the NMDA subtype of glutamate receptors. That early promise is just beginning to translate into approvable drugs. Here we review the reasons for this slow progress and critically assess the future prospects for drugs that act on NMDA receptor pathways, including potential treatments for some major disorders such as stroke and Alzheimer's disease, for which effective therapies are still lacking.