Journal of Alzheimer's disease : JAD
-
Review
Membrane anchored and lipid raft targeted β-secretase inhibitors for Alzheimer's disease therapy.
β-secretase, a key enzyme involved in amyloid-β generation, is an attractive candidate for Alzheimer's disease therapy. Transition-state inhibitors of β-secretase are designed to achieve specificity. However, these inhibitors bind only to the active conformation of the enzyme and as the active β-secretase is sequestered in subcellular compartments, new strategies have to be implemented. ⋯ In addition, membrane-anchoring of soluble inhibitors reduces the dimensionality of the inhibitor and consequently increases the inhibitor concentration at the target membrane plane. Such inhibitors have great potential in terms of substrate selectivity and reduced side effects. Not only for β-secretase, this strategy could be applied for many membrane targets that are localized either at the plasma membrane or in the endocytic compartments.
-
The purpose of this study was to assess metabolic, perfusion, and microstructural changes within the posterior cingulate area in patients with Alzheimer's disease (AD) and amnestic mild cognitive impairment (aMCI) using advanced MR techniques such as: spectroscopy (MRS), perfusion weighted imaging (PWI), and diffusion tensor imaging (DTI). Thirty patients with AD (mean age 71.5 y, MMSE 18), 23 with aMCI (mean age 66 y, MMSE 27.4), and 15 age-matched normal controls (mean age 69 y, MMSE 29.5) underwent conventional MRI followed by MRS, PWI, and DTI on 1.5 Tesla MR unit. Several metabolite ratios (N-acetylaspartate [NAA]/creatine [Cr], choline [Ch]/Cr, myoinositol [mI]/Cr, mI/NAA, mI/Cho) as well as parameters of cerebral blood volume relative to cerebellum and fractional anisotropy were obtained in the posterior cingulate region. ⋯ Of neuroimaging methods, DTI revealed the highest accuracy in diagnosis of AD and aMCI (0.95, 0.79) followed by PWI (0.87, 0.67) and MRS (0.82, 0.47), respectively. In conclusion, AD is a complex pathology regarding both grey and white matter. DTI seems to be the most useful imaging modality to distinguish between AD, aMCI, and control group, followed by PWI and MRS.
-
Comparative Study
Episodic memory decline predicts cortical amyloid status in community-dwelling older adults.
Intra-individual decline in memory and cognition is characteristic of prodromal Alzheimer's disease (AD) and may allow detection of very early AD pathology. Episodic memory task scores on a brief computerized cognitive battery (CogState) were prospectively evaluated at baseline, and 3-, 6-, 9-, 12-, and 24-months post-baseline. Linear mixed models were conducted to compute age-adjusted slopes. ⋯ One of the memory decliners and none of the non-decliners fulfilled criteria for mild cognitive impairment, but the groups did not differ with respect to subjective memory impairment, neuropsychological evidence of episodic memory impairment, or MRI imaging abnormalities. Intra-individual decline in episodic memory can be detected using a brief computerized cognitive performance test optimized to detect change in community-dwelling non-demented older persons and appears predictive of the presence of cerebral amyloid in about half of these persons. This approach may help detect early prodromal AD pathology in wider-scale community screening programs.
-
The Asp22fs(g.63_64insC) mutation in progranulin gene (GRN) has been so far reported in one patient who developed frontotemporal dementia (FTD) at the age of 65. Here, we describe the clinical heterogeneity associated with the GRN Asp22fs mutation in a large Italian family. Clinical and instrumental workup of two symptomatic carriers in two generations has been carried out, together with genetic analysis of probands and of nine asymptomatic family members. ⋯ Cerebrospinal fluid amyloid-β, tau, and phosphotau protein levels were in both cases in the range of normality. Additional nine asymptomatic family members were studied. This family's description expands the spectrum of clinical presentations of frontotemporal lobar degeneration caused by GRN mutations, suggesting that the diagnosis could be missed in some individuals with an atypical presentation, and points up the importance of GRN plasma level evaluation.
-
Physiological brain aging is characterized by a combination of synaptic pruning, loss of cortico-cortical connections and neuronal apoptosis that provoke age-dependent decline of cognitive functions. Neural/synaptic redundancy and plastic remodeling of brain networking, also secondary to mental and physical training, promotes maintenance of brain activity in healthy elderly for everyday life and fully productive affective and intellectual capabilities. Unfortunately, in pathological situations, aging triggers neurodegenerative processes that impact on cognition, like Alzheimer's disease (AD). ⋯ Modern neurophysiological techniques including digital electroencephalography (EEG) allow non-invasive analysis of cortico-cortical connectivity and neuronal synchronization of firing, and coherence of brain rhythmic oscillations at various frequencies. The present review of field EEG literature suggests that discrimination between physiological and pathological brain aging clearly emerges at the group level, with some promising result on the informative value of EEG markers at the individual level. Integrated approaches utilizing neurophysiological techniques together with biological markers and structural and functional imaging are promising for large-scale, low-cost, widely available on the territory and non-invasive screening of at-risk populations.