Cell Death Dis
-
Activation of tumor necrosis factor receptor-1 can trigger survival or apoptosis pathways. In many cellular models, including the neuronal cell model PC12, it has been demonstrated that inhibition of protein synthesis is sufficient to render cells sensitive to apoptosis induced by TNFα. The survival effect is linked to the translocation of the transcription factor nuclear factor-kappa B (NF-κB) to the nucleus and activation of survival-related genes such as FLICE-like inhibitory protein long form (FLIP-L) or IAPs. ⋯ From a functional point of view, we show that inhibition of the MAPK/ERK pathway and the NF-κB pathway are equally relevant to render PC12 cells sensitive to cell death induced by TNFα. Apoptosis induced by TNFα under these conditions is dependent on jun nuclear kinase1/2 JNK1/2-dependent Bim upregulation. Therefore, we report a previously undescribed and essential role for MAPK/ERK activation by FLIP-L in the decision between cell survival and apoptosis upon TNFα stimulation.
-
Microglia are the resident immune cells in the central nervous system and key players against pathogens and injury. However, persistent microglial activation often exacerbates pathological damage and has been implicated in many neurological diseases. Despite their pivotal physiological and pathophysiological roles, how the survival and death of activated microglia is regulated remains poorly understood. ⋯ Microglia from mice lacking functional TRIF were fully protected against TLR3/4 activation and zVAD-fmk-induced necrosis, and genetic deletion of rip3 also prevented microglia necroptosis. Activation of c-jun N-terminal kinase and generation of specific reactive oxygen species were downstream signaling events required for microglial cell death execution. Taken together, this study reveals a robust RIP3-dependent necroptosis signaling pathway in TLR-activated microglia upon caspase blockade and suggests that TLR signaling and programmed cell death pathways are closely linked in microglia, which could contribute to neuropathology and neuroinflammation when dysregulated.
-
Mesenchymal stem cells (MSCs) are able to infiltrate tumor tissues and thereby effectively deliver gene therapeutic payloads. Here, we engineered murine MSCs (mMSCs) to express a secreted form of the TNF-related apoptosis-inducing ligand (TRAIL), which is a potent inducer of apoptosis in tumor cells, and tested these MSCs, termed MSC.sTRAIL, in combination with conventional chemotherapeutic drug treatment in colon cancer models. When we pretreated human colorectal cancer HCT116 cells with low doses of 5-fluorouracil (5-FU) and added MSC.sTRAIL, we found significantly increased apoptosis as compared with single-agent treatment. ⋯ Consequently, when we generated MSCs that secreted TRAIL-R2-specific variants of soluble TRAIL (sTRAIL), we found that such engineered MSCs, labeled MSC.sTRAIL(DR5), had enhanced antitumor activity in combination with 5-FU when compared with MSC.sTRAIL. In contrast, TRAIL-resistant pancreatic carcinoma PancTu1 cells responded better to MSC.sTRAIL(DR4) when the antiapoptotic protein XIAP (X-linked inhibitor of apoptosis protein) was silenced concomitantly. Taken together, our results demonstrate that TRAIL-receptor selective variants can potentially enhance the therapeutic efficacy of MSC-delivered TRAIL as part of individualized and tumor-specific combination treatments.
-
Multi-protein complexes called inflammasomes have recently been identified and shown to contribute to cell death in tissue injury. Intravenous immunoglobulin (IVIg) is an FDA-approved therapeutic modality used for various inflammatory diseases. The objective of this study is to investigate dynamic responses of the NLRP1 and NLRP3 inflammasomes in stroke and to determine whether the NLRP1 and NLRP3 inflammasomes can be targeted with IVIg for therapeutic intervention. ⋯ IVIg treatment protected neurons in experimental stroke models by a mechanism involving suppression of NLRP1 and NLRP3 inflammasome activity. Our findings provide evidence that the NLRP1 and NLRP3 inflammasomes have a major role in neuronal cell death and behavioral deficits in stroke. We also identified NLRP1 and NLRP3 inflammasome inhibition as a novel mechanism by which IVIg can protect brain cells against ischemic damage, suggesting a potential clinical benefit of therapeutic interventions that target inflammasome assembly and activity.
-
The insulin-like growth factor-1 receptor (IGF-1R) signaling pathway is critical for both normal mammary gland development and malignant transformation. It has been reported that the IGF-1 stimulates breast cancer cell proliferation and is upregulated in tumors with BRCA1/2 mutations. We report here that IGF-1 is negatively regulated by BRCA1 at the transcriptional level in human breast cancer cells. ⋯ Blocking the IGF-1/IGF-1R/phosphoinositide 3-kinase (PI3K)/AKT pathway either by a neutralizing antibody or by small-molecule inhibitors preferentially reduces the proliferation of BRCA1-KD cells. Furthermore, the IGF-1-EREL-Luc reporter assay demonstrates that various inhibitors, which can inhibit the IGF-1R pathway, can suppress this reporter activity. These findings suggest that BRCA1 defectiveness keeps turning on IGF-1/PI3K/AKT signaling, which significantly contributes to increase cell survival and proliferation.