Cell Death Dis
-
Recent researches regarding to exosomal involvement in alpha-synuclein (α-syn) transmission relating to the pathological process of Parkinson's disease (PD) have attracted considerable attention. It is highly desirable to make clear the diffusion process and cellular uptake of α-syn-associated exosomes and the underlying mechanism of exosomes-involved communication in the synucleinopathy pathogenesis. To determine the contribution of α-syn-associated exosomes to the initiation and progression of PD, plasma exosomes derived from PD patients were stereotaxically injected into the striatum of mice brains. ⋯ Finally, we described a mechanism underlying this potential role of microglia in the transmission of exosomal α-syn. Specifically, exogenous exosomes were found to dysregulate autophagy of the BV2 mouse microglia cell line with presentation of increased accumulation of intracellular α-syn and accelerated secretion of α-syn into extracellular space. These results suggest that microglia play a crucial role in the transmission of α-syn via exosomal pathways, in additional to idea that the progression of PD may be altered by the modulation of exosome secretion and/or microglial states.
-
Bone marrow derived stem cells (BMSCs) transplantation are viewed as a promising therapeutic candidate for spinal cord injury (SCI). However, the inflammatory microenvironment in the spinal cord following SCI limits the survival and efficacy of transplanted BMSCs. In this study, we investigate whether injured neuronal cells derived exosomes would influence the survival of transplanted BMSCs after SCI. ⋯ In addition, hypoxia-preconditioned promoted the survival of BMSCs under oxidative stress both in vivo after SCI and in vitro. Our results also indicate that HIF-1α plays a central role in the survival of BMSCs in hypoxia pretreatment under oxidative stress conditions. siRNA-HIF-1α increased apoptosis of BMSCs; in contrast, HIF-1α inducer FG-4592 attenuated apoptosis of BMSCs. Taken together, we found that the injured PC12 cells derived exosomes accelerate BMSCs apoptosis after SCI and in vitro, hypoxia pretreatment or activating expression of HIF-1α to be important in the survival of BMSCs after transplantation, which provides a foundation for application of BMSCs in therapeutic potential for SCI.
-
Gastric cancer (GC) is one of the most frequent malignancies, and increasing evidence supports the contribution of microRNA (miRNAs) to cancer progression. miR-1254 has been confirmed to participate in the regulation of various cancers, while the function of miR-1254 in GC remains unknown. In this study, we investigated the role of miR-1254 in GC. The expression of miR-1254 was detected in human GC specimens and cell lines by miRNA RT-PCR. ⋯ Similarly, the effects of the miR-1254-inhibitor were also rescued by Smurf1-shRNA. Furthermore, we found that miR-1254 inhibited EMT and decreased the PI3K/AKT signaling pathway through downregulating Smurf1. In summary, overexpression of miR-1254 could suppress proliferation, migration, invasion, and EMT via PI3K/AKT signaling pathways by downregulation of Smurf1 in GC, which suggests a potential therapeutic target for GC.
-
Our previous study demonstrated that angiogenesis increased during the recovery of heat-denatured endothelial cells. However, the mechanism is still unclear. This study aimed to investigate the relation of autophagy and angiogenesis during the recovery of heat-denatured endothelial cells. ⋯ Furthermore, autophagy inhibition by antioxidant NAC, compound C or AMPK siRNA impaired cell proliferation, migration and tube formation heat-denatured HUVECs. At last, the in vivo experiments also showed that inhibition of autophagy by bafilomycin A1 could suppress angiogenesis and recovery of heat-denatured dermis. Taken together, we firstly revealed that autophagy promotes angiogenesis via AMPK/Akt/mTOR signaling during the recovery of heat-denatured endothelial cells and may provide a potential therapeutic target for the recovery of heat-denatured dermis.
-
Tumor necrosis factor (TNF) and Toll-like receptor (TLR)3/TLR4 activation trigger necroptotic cell death through downstream signaling complex containing receptor-interacting protein kinase 1 (RIPK1), RIPK3, and pseudokinase mixed lineage kinase-domain-like (MLKL). However, the regulation of necroptotic signaling pathway is far less investigated. Here we showed that c-Jun N-terminal kinases (JNK1 and JNK2) displayed kinase-dependent and -independent functions in regulating TNF- and TLRs-mediated necroptosis. ⋯ Mechanistic studies revealed that RIPK1 recruited JNK to the necrosome complex and their kinase activity was required for necrosome formation and the phosphorylation of MLKL in TNF- and TLRs-induced necroptosis. Loss of JNK protein consistently suppressed the phosphorylation of MLKL and necrosome formation in TNF-triggered necroptosis, but differentially promoted the phosphorylation of MLKL and necrosome formation in poly I:C-triggered necroptosis by promoting the oligomeration of TRIF. In conclusion, our findings define a differential role for JNK in regulating TNF- and TLRs-mediated necroptosis by their kinase or scaffolding activities.