Diabetes
-
Obesity causes increased classical and decreased alternative macrophage activation, which in turn cause insulin resistance in target organs. Because A2B adenosine receptors (ARs) are important regulators of macrophage activation, we examined the role of A2B ARs in adipose tissue inflammation and insulin resistance. A2B AR deletion impaired glucose and lipid metabolism in mice fed chow but not a high-fat diet, which was paralleled by dysregulation of the adipokine system, and increased classical macrophage activation and inhibited alternative macrophage activation. ⋯ Furthermore, in in vitro studies, we found that stimulation of A2B ARs suppressed free fatty acid-induced deleterious inflammatory and metabolic activation of macrophages. Moreover, AR activation upregulated the interleukin-4-induced expression of CCAAT/enhancer-binding protein-β, interferon regulatory factor 4, and peroxisome proliferator-activated receptor-γ in macrophages. Altogether, our results indicate that therapeutic strategies targeting A2B ARs hold promise for preventing adipose tissue inflammation and insulin resistance.
-
It has been established that Ca(V)3.2 T-type voltage-gated calcium channels (T-channels) play a key role in the sensitized (hyperexcitable) state of nociceptive sensory neurons (nociceptors) in response to hyperglycemia associated with diabetes, which in turn can be a basis for painful symptoms of peripheral diabetic neuropathy (PDN). Unfortunately, current treatment for painful PDN has been limited by nonspecific systemic drugs with significant side effects or potential for abuse. We studied in vitro and in vivo mechanisms of plasticity of Ca(V)3.2 T-channel in a leptin-deficient (ob/ob) mouse model of PDN. ⋯ Importantly, deglycosylation treatment with neuraminidase inhibits native T-currents in nociceptors and in so doing completely and selectively reverses hyperalgesia in diabetic ob/ob mice without altering baseline pain responses in healthy mice. Our study describes a new mechanism for the regulation of Ca(V)3.2 activity and suggests that modulating the glycosylation state of T-channels in nociceptors may provide a way to suppress peripheral sensitization. Understanding the details of this regulatory pathway could facilitate the development of novel specific therapies for the treatment of painful PDN.
-
Randomized Controlled Trial
Disordered control of intestinal sweet taste receptor expression and glucose absorption in type 2 diabetes.
We previously established that the intestinal sweet taste receptors (STRs), T1R2 and T1R3, were expressed in distinct epithelial cells in the human proximal intestine and that their transcript levels varied with glycemic status in patients with type 2 diabetes. Here we determined whether STR expression was 1) acutely regulated by changes in luminal and systemic glucose levels, 2) disordered in type 2 diabetes, and 3) linked to glucose absorption. Fourteen healthy subjects and 13 patients with type 2 diabetes were studied twice, at euglycemia (5.2 ± 0.2 mmol/L) or hyperglycemia (12.3 ± 0.2 mmol/L). ⋯ Plasma 3-OMG concentrations were significantly higher in type 2 diabetic patients than in healthy control subjects during acute hyperglycemia. Intestinal T1R2 expression is reciprocally regulated by luminal glucose in health according to glycemic status but is disordered in type 2 diabetes during acute hyperglycemia. This defect may enhance glucose absorption in type 2 diabetic patients and exacerbate postprandial hyperglycemia.
-
Advanced glycation end products (AGEs) and their receptor (RAGE) play a role in diabetic nephropathy. We screened DNA aptamer directed against AGEs (AGEs-aptamer) in vitro and examined its effects on renal injury in KKAy/Ta mice, an animal model of type 2 diabetes. Eight-week-old male KKAy/Ta or C57BL/6J mice received continuous intraperitoneal infusion of AGEs- or control-aptamer for 8 weeks. ⋯ Urinary albumin and 8-hydroxy-2'-deoxy-guanosine levels were increased, and glomerular hypertrophy and enhanced extracellular matrix accumulation were observed in KKAy/Ta mice, all of which were prevented by AGEs-aptamer. Moreover, AGEs-aptamer significantly reduced gene expression of RAGE, monocyte chemoattractant protein-1, connective tissue growth factor, and type IV collagen both in the kidney of KKAy/Ta mice and in AGE-exposed human cultured mesangial cells. Our present data suggest that continuous administration of AGEs-aptamer could protect against experimental diabetic nephropathy by blocking the AGEs-RAGE axis and may be a feasible and promising therapeutic strategy for the treatment of diabetic nephropathy.