Adv Exp Med Biol
-
Fragile X syndrome (FXS), a severe neurodevelopmental anomaly, and one of the earliest disorders linked to an unstable ('dynamic') mutation, is caused by the large (>200) CGG repeat expansions in the noncoding portion of the FMR1 (Fragile X Mental Retardation-1) gene. These expansions, termed full mutations, normally silence this gene's promoter through methylation, leading to a gross deficit of the Fragile X Mental Retardation Protein (FMRP) that is essential for normal brain development. Rare individuals with the expansion but with an unmethylated promoter (and thus, FMRP production), present a much less severe form of FXS. ⋯ Special emphasis has been placed on the possibility that the modest elevation of 'toxic' FMR1 mRNA in the carriers of grey zone alleles may present an additional risk for some neurodegenerative diseases, such as those associated with parkinsonism, by synergizing with either other susceptibility genes or environmental poisons. The present status ofthe treatment of fragile X-related disorders, especially FXS, is presented in the last section of this chapter. Pharmacological interventions in this syndrome have recently extended beyond stimulants and antipsychotic medications, and the latest trials involving a group of GluR5 antagonists aim to ascertain if these substances have the potential to reverse some of the neurobiological abnormalities of FXS.
-
Tourette syndrome (TS) is a neurodevelopmental disorder consisting of multiple motor and one or more vocal/phonic tics. TS is increasingly recognized as a common neuropsychiatric disorder usually diagnosed in early childhood and comorbid neuropsychiatric disorders occur in approximately 90% of patients, with attention deficit hyperactivity disorder (ADHD) and obsessive-compulsive disorder (OCD) being the most common ones. Moreover, a high prevalence of depression and personality disorders has been reported. ⋯ The current diagnostic systems have dictated that TS is a unitary condition. However, recent studies have demonstrated that there may be more than one TS phenotype. In conclusion, it appears that TS probably should no longer be considered merely a motor disorder and, most importantly, that TS is no longer a unitary condition, as it was previously thought.
-
Despite progress in brain tumor therapy, the prognosis of malignant glioma patients remains dismal. Among the new treatments currently being investigated, immunotherapy is theoretically very attractive since it offers the potential for high tumor-specific cytotoxicity. Increasing numbers of reports demonstrate that systemic immunotherapy using dendritic cells is capable of inducing an antiglioma response. ⋯ Dendritic cell-based immunotherapy strategies appear promising as an approach to successfully induce an antitumor immune response in patients with glioma, where it seems to be safe and without major side effects. The development of methods for manipulating dendritic cells for the purpose of vaccination will enhance the clinical usefulness of these cells for biotherapy. Its efficacy should be further determined in randomized, controlled clinical trials.
-
The retrotrapezoid nucleus (RTN) is located in the rostral medulla oblongata close to the ventral surface and consists of a bilateral cluster of glutamatergic neurons that are non-aminergic and express homeodomain transcription factor Phox2b throughout life. These neurons respond vigorously to increases in local pCO(2) via cell-autonomous and paracrine (glial) mechanisms and receive additional chemosensory information from the carotid bodies. RTN neurons exclusively innervate the regions of the brainstem that contain the respiratory pattern generator (RPG). ⋯ Phox2b mutations that cause congenital central hypoventilation syndrome in humans prevent the development of RTN neurons in mice. Selective deletion of the RTN Phox2b-VGLUT2 neurons by genetic means in mice eliminates the respiratory chemoreflex in neonates. In short, RTN Phox2b-VGLUT2 neurons are a major nodal point of the CNS network that regulates pCO(2) via breathing and these cells are probable central chemoreceptors.