Adv Exp Med Biol
-
The interactions between tumor cells and the non-malignant stromal and immune cells that make up the tumor microenvironment (TME) are critical to the pathophysiology of cancer. Mesenchymal stem cells (MSCs) are multipotent stromal stem cells found within most cancers and play a critical role influencing the formation and function of the TME. MSCs have been reported to support tumor growth through a variety of mechanisms including (i) differentiation into other pro-tumorigenic stromal components, (ii) suppression of the immune response, (iii) promotion of angiogenesis, (iv) enhancement of an epithelial-mesenchymal transition (EMT), (v) enrichment of cancer stem-like cells (CSC), (vi) increase in tumor cell survival, and (vii) promotion of tumor metastasis. ⋯ Tumor-suppressive effects are observed when MSCs are used in higher ratios to tumor cells. Additionally, MSC function appears to be tissue type dependent and may rely on cancer education to reprogram a naïve MSC with antitumor effects into a cancer-educated or cancer-associated MSC (CA-MSC) which develops pro-tumorigenic function. Further work is required to delineate the complex crosstalk between MSCs and other components of the TME to accurately assess the impact of MSCs on cancer initiation, growth, and spread.
-
Myeloid-derived suppressor cells (MDSCs) represent a heterogenous population of immature myeloid cells capable of modulating immune responses. In the context of cancer, MDSCs are abnormally produced and recruited to the tumor microenvironment (TME) to aid in the establishment of an immunosuppressive TME that facilitates tumor escape. ⋯ In this chapter, we review MDSC characterization, development, expansion, and mechanisms that facilitate immunosuppression and tumor progression. Furthermore, we highlight studies demonstrating the clinical significance of MDSCs in various disease states in addition to strategies that modulate various aspects of MDSC biology for therapeutic gain.
-
Case Reports Multicenter Study
Necrotizing Soft Tissue Infections: Case Reports, from the Clinician's Perspectives.
Necrotizing soft tissue infections (NSTI) are rapidly spreading and life-threatening infections of skin and soft tissue. Essentially there are two types of NSTI, based on the invasive microorganisms. The speed of development and associated clinical features differ markedly depending on the bacterial etiology. ⋯ In this chapter, we present three cases from the INFECT-study population. This study was an international, multicenter, prospective cohort study of adult patients with NSTI. We describe the clinical presentations, pre-, peri-, and postoperative clinical findings, microbiology, and treatment in cases of monobacillary Streptococcus pyogenes necrotizing soft tissue infections NSTI, polymicrobial infection, and an unusual presentation of pelvic monobacillary S. pyogenes infection in an immunocompromised patient.
-
Outcome after traumatic brain injury (TBI) is worsened by hemorrhagic shock (HS); however, the existing volume expansion approach with resuscitation fluids (RF) is controversial as it does not adequately alleviate impaired microvascular cerebral blood flow (mCBF). We previously reported that resuscitation fluid with drag reducing polymers (DRP-RF) improves CBF by rheological modulation of hemodynamics. Here, we evaluate the efficacy of DRP-RF, compared to lactated Ringers resuscitation fluid (LR-RF), in reducing cerebral microthrombosis and reperfusion mitochondrial oxidative stress after TBI complicated by HS. ⋯ Post-mortem whole-brain visualization of DiI painted vessels revealed multiple microthromboses in both hemispheres that were 29 ± 3% less in DRP-RF vs. LR-RF group (p < 0.05). Resuscitation after TBI/HS using DRP-RF effectively restores mCBF, reduces hypoxia, microthrombosis formation, and mitochondrial oxidative stress compared to conventional volume expansion with LR-RF.
-
The field of cancer therapy has been revolutionized through the use of immunotherapy, and treatment with these therapies now spans from early to late stage, and even into prevention. However, there are still a significant proportion of patients who do not derive long-term benefit from monotherapy and even combined therapy regimens, and novel approaches are needed to enhance therapeutic responses. Additionally, ideal biomarkers of response to immunotherapy are lacking and are critically needed. ⋯ The field of microbiome research in immuno-oncology is quickly emerging, with the potential use of the microbiome (in the gut as well as in the tumor) as a biomarker for response to IO as well as a therapeutic target. Notably, the microbiome may even have a role in toxicity to therapy. The state of the science in microbiome and IO are discussed and caveats and future directions are outlined to provide insights as we move forward as a field.