Trials
-
Randomized Controlled Trial Multicenter Study
Derivation and validation phase for the development of clinical prediction rules for rehabilitation in chronic nonspecific low back pain patients: study protocol for a randomized controlled trial.
There is a consensus that exercise therapy should be used as a therapeutic approach in chronic low back pain (CLBP) but little consensus has been reached about the preferential type of therapy. Due to the heterogeneity of the population no clear effect of specific therapy interventions are found. Probably a specific subgroup of the investigated population will benefit from the intervention and another subgroup will not benefit, looking at the total investigated population no significant effects can be found. Therefore there is a need for the development of clinical prediction rules (CPRs). Objectives for this trial are first, the derivation of CPRs to predict treatment response to three forms of exercise therapy for patients with nonspecific CLBP. Secondly, we aim to validate a CPR for the three forms of exercise therapy for patients with nonspecific CLBP. ⋯ A randomized controlled trial has not previously been performed for the development of a CPR for exercise therapy in CLBP patients. Only one CPR was described in a single-arm design for motor control therapy in sub-acute non-radicular LBP patients. In this study, a sufficiently large sample will be included in both the derivation and validation phase.
-
Randomized Controlled Trial Multicenter Study Clinical Trial
Prevention of delirium (POD) for older people in hospital: study protocol for a randomised controlled feasibility trial.
Delirium is the most frequent complication among older people following hospitalisation. Delirium may be prevented in about one-third of patients using a multicomponent intervention. However, in the United Kingdom, the National Health Service has no routine delirium prevention care systems. We have developed the Prevention of Delirium Programme, a multicomponent delirium prevention intervention and implementation process. We have successfully carried out a pilot study to test the feasibility and acceptability of implementation of the programme. We are now undertaking preliminary testing of the programme. ⋯ This feasibility study will be used to gather data to inform the design of a future definitive randomised controlled trial.
-
Randomized Controlled Trial Multicenter Study
Effect of heating and cooling combination therapy on patients with chronic low back pain: study protocol for a randomized controlled trial.
Clinicians often apply heating or cooling stimulation for treatment of musculoskeletal pain. However, scalding, frostbite and skin ulcers may occur from the excessive use of either therapy alone. Heating and cooling combination therapy may be a suitable alternative for treatment of musculoskeletal diseases, although insufficient research has documented the safety and efficacy of such therapy. The purpose of this clinical trial is to determine the efficacy and safety of heating and cooling combination therapy for treatment of chronic low back pain. ⋯ This research will determine the efficacy and safety of heating and cooling combination therapy on chronic low back pain. The results of this trial may have important implications for the more widespread use of heating and cooling combination therapy for treatment of musculoskeletal pain.
-
Randomized Controlled Trial Multicenter Study
The Stroke Hyperglycemia Insulin Network Effort (SHINE) trial: an adaptive trial design case study.
The 'Adaptive Designs Accelerating Promising Trials into Treatments (ADAPT-IT)' project is a collaborative effort supported by the National Institutes of Health (NIH) and United States Food & Drug Administration (FDA) to explore how adaptive clinical trial design might improve the evaluation of drugs and medical devices. ADAPT-IT uses the National Institute of Neurologic Disorders & Stroke-supported Neurological Emergencies Treatment Trials (NETT) network as a 'laboratory' in which to study the development of adaptive clinical trial designs in the confirmatory setting. The Stroke Hyperglycemia Insulin Network Effort (SHINE) trial was selected for funding by the NIH-NINDS at the start of ADAPT-IT and is currently an ongoing phase III trial of tight glucose control in hyperglycemic acute ischemic stroke patients. Within ADAPT-IT, a Bayesian adaptive Goldilocks trial design alternative was developed. ⋯ Two designs were brought forward, and both were evaluated, revised, and improved based on the input of all parties involved in the ADAPT-IT process. However, the SHINE investigators were tasked with choosing only a single design to implement and ultimately elected not to implement the Goldilocks design. The Goldilocks design will be retrospectively executed upon completion of SHINE to later compare the designs based on their use of patient resources, time, and conclusions in a real world setting.
-
Randomized Controlled Trial Multicenter Study
A pilot feasibility, safety and biological efficacy multicentre trial of therapeutic hypercapnia after cardiac arrest: study protocol for a randomized controlled trial.
Cardiac arrest causes ischaemic brain injury. Arterial carbon dioxide tension (PaCO2) is a major determinant of cerebral blood flow. Thus, mild hypercapnia in the 24 h following cardiac arrest may increase cerebral blood flow and attenuate such injury. We describe the Carbon Control and Cardiac Arrest (CCC) trial. ⋯ The trial commenced in December 2012 and, when completed, will provide clinical evidence as to whether targeting mild hypercapnia for 24 h following intensive care unit admission for cardiac arrest patients is feasible and safe and whether it results in decreased concentrations of neurological injury biomarkers compared with normocapnia. Trial results will also be used to determine whether a phase IIb study powered for survival at 90 days is feasible and justified.