Can J Emerg Med
-
Multicenter Study
Offload zones to mitigate emergency medical services (EMS) offload delay in the emergency department: a process map and hazard analysis.
Introduction Offload delay is a prolonged interval between ambulance arrival in the emergency department (ED) and transfer of patient care, typically occurring when EDs are crowded. The offload zone (OZ), which manages ambulance patients waiting for an ED bed, has been implemented to mitigate the impact of ED crowding on ambulance availability. Little is known about the safety or efficiency. The study objectives were to process map the OZ and conduct a hazard analysis to identify steps that could compromise patient safety or process efficiency. ⋯ This process map and hazard analysis is a first step in understanding the safety and efficiency of the OZ. The results from this study will inform current policy and practice, and future work to reduce offload delay.
-
Multicenter Study
National Survey of Emergency Physicians to Define Functional Decline in Elderly Patients with Minor Trauma.
There are a number of screening tools to predict return to the emergency department (ED) in elderly trauma patients, but none exist to specifically screen for functional decline after a minor injury. The objective of this study was to identify outcome measures for a possible future clinical decision rule to be used in the ED to identify previously independent patients at high risk of functional decline at six months post minor injury. ⋯ A drop of three points on the 28-point OARS ADL Scale would be deemed clinically important by the vast majority of emergency physicians. Further, a sensitivity of 93% for a clinical decision tool would satisfy the MCID requirements of the vast majority of emergency physicians. There appears to be a gap between physician knowledge and actual practice. We intend to use these findings in the development of a clinical decision rule to identify high-risk elderly trauma patients.
-
Fast tracks are one approach to reduce emergency department (ED) crowding. No studies have assessed the use of fast tracks in smaller hospitals with single physician coverage. Our study objective was to determine if implementation of an ED fast track in a single physician coverage setting would improve wait times for low-acuity patients without negatively impacting those of higher acuity. ⋯ Implementation of a fast track in a medium-volume community hospital with single physician coverage can improve patient throughput by decreasing WT and LOS without negatively impacting high-acuity patients. This may be clinically relevant, particularly for hospital administrators, given the improvement in meeting national WT standards we found post-intervention.
-
Continuous positive airway pressure (CPAP) is commonly used in the treatment of acute cardiogenic pulmonary edema (ACPE) and acute exacerbations of chronic obstructive pulmonary disease (AECOPD). In-hospital evidence is robust: CPAP has been shown to improve respiratory status and to reduce intubation rates. There is less evidence on prehospital CPAP, although the emergency medical services (EMS) adoption of this modality is increasing. The objectives of this study were to 1) measure the effectiveness of prehospital CPAP on morbidity, mortality, and transport times; and 2) audit the selection of patients by medics for appropriateness and safety. ⋯ Despite the robust in-hospital data supporting its use, we could not find benefit from CPAP in our prehospital setting with respect to morbidity, mortality, and length of stay. EMS must exercise caution in making the decision to invest in the equipment and training required to implement prehospital CPAP.
-
Randomized Controlled Trial Multicenter Study
Targeted temperature management: It is not yet time to change your target temperature.
Clinical question In unconscious patients of out-of-hospital cardiac arrest, does targeted temperature management to 36°C (96.8°F) improve outcomes compared to the standard target of 32°C-34°C (89.6°F-93.2°F)? Article chosen Nielson N, Wetterslev J, Cronberg T, et al. Targeted temperature management at 33°C versus 36°C after cardiac arrest. N Engl J Med 2013;369:2197-2206. ⋯ To determine which temperature, 33°C (91.4°F) or 36°C (96.8°F), is associated with lower mortality and better neurologic function after cardiac arrest.