J Emerg Med
-
Approximately 375,000 people annually experience sudden cardiac arrest (CA) in Europe. Most patients who survive the initial hours and days after CA die of postanoxic brain damage. Current monitors, such as electrocardiography and end-tidal capnography, provide only indirect information about the condition of the brain during cardiopulmonary resuscitation (CPR). In contrast, cerebral near-infrared spectroscopy provides continuous, noninvasive, real-time information about brain oxygenation without the need for a pulsatile blood flow. It measures transcutaneous cerebral tissue oxygen saturation (rSO2). This information could supplement currently used monitors. Moreover, an evolution in rSO2 monitoring technology has made it easier to assess rSO2 in CA conditions. ⋯ The literature shows that rSO2 has the potential to serve multiple roles as a neuromonitoring tool during CPR and also to guide neuroprotective therapeutic strategies.