Journal of cellular physiology
-
Coronavirus disease-2019 (COVID-19) is a global pandemic with high infectivity and pathogenicity, accounting for tens of thousands of deaths worldwide. Recent studies have found that the pathogen of COVID-19, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), shares the same cell receptor angiotensin converting enzyme II (ACE2) as SARS-CoV. The pathological investigation of COVID-19 deaths showed that the lungs had characteristics of pulmonary fibrosis. ⋯ Our findings indicate that patients with pulmonary fibrosis, heart failure, and virus infection have a higher risk and are more susceptible to SARS-CoV-2 infection. The SARS-CoV-2 might attack other organs by getting into the bloodstream. This study provides new insights into SARS-CoV-2 blood entry and heart injury and might propose a therapeutic strategy to prevent patients from developing severe complications.
-
Tumor cells secrete extracellular vesicles (EVs) for intercellular communication. EVs by transporting different proteins, nucleic acids, and lipids contribute to affect target cell function and fate. EVs which originate directly from multivesicular bodies so-called exosomes have dramatically fascinated the attention of researchers owing to their pivotal roles in the tumorigenesis. Breast cancer, arising from milk-producing cells, is the most identified cancer among women and has become the leading cause of cancer-related death in women globally. ⋯ Additionally, these exosomes may serve as a cancer treatment tool because they are a good candidate for cancer diagnosis (as biomarker) and therapy (as drug-carrier). Despite recent development in the biology of tumor-derived exosomes, the detailed mechanism of tumorigenesis, and exosome-based cancer-therapy remain still indefinable. Here, we discuss the key function of breast cancer-derived exosomes in tumorgenesis and shed light on the possible clinical application of these exosomes in breast cancer treatment.
-
Many cytokines are crucial drivers of cancers and autoimmune conditions. These proteins bind to receptors and signal their responses through Janus kinase (JAK) and signal transducer and activator of transcription (STAT) pathways. Genetic variations in the JAK-STAT pathway are correlated with the increased risk of cancers, autoimmunity as well as inflammatory diseases. ⋯ Tofacitinib, as the first JAK inhibitor, is approved for rheumatoid arthritis therapy. Also, many other JAK inhibitors have been proven or are in various phases of clinical trials for various diseases. At present, small-molecule JAK inhibitors are considered as a novel category of drugs in the treatment of cancer and immune-mediated diseases.
-
Immunotherapy has caused a paradigm shift in the treatment of several malignancies, particularly the blockade of programmed death-1 (PD-1) and its specific receptor/ligand PD-L1 that have revolutionized the treatment of a variety of malignancies, but significant durable responses only occur in a small percentage of patients, and other patients failed to respond to the treatment. Even those who initially respond can ultimately relapse despite maintenance treatment, there is considerable potential for synergistic combinations of immunotherapy and chemotherapy agents with immune checkpoint inhibitors into conventional cancer treatments. ⋯ In this review, the current state of knowledge about PD-1/PD-L1 inhibitors, the date in the literature to ascertain the combination of anti-PD-1/PD-L1 antibodies with cytokines is discussed. Finally, it is noteworthy that novel therapeutic approaches based on the efficient combination of recombinant cytokines with the PD-L1/PD-1 blockade therapy can enhance antitumor immune responses against various malignancies.
-
Although degenerative disc disease (DDD) and related low back pain (LBP) are growing public health problems, the underlying disease mechanisms remain unclear. An increase in the vascular endothelial growth factor (VEGF) levels in DDD has been reported. This study aimed to examine the role of VEGF receptors (VEGFRs) in DDD, using a mouse model of DDD. ⋯ This suggests the involvement of VEGFR-1 signaling specifically in pain transmission. Collectively, our results indicate that the VEGF signaling is involved in DDD. Particularly, VEGFR-1 is critical for discogenic LBP transmission independent of the degree of disc pathology.