Journal of cellular physiology
-
Meta Analysis
Prognostic significance of X-linked inhibitor of apoptosis protein in solid tumors: A systematic review and meta-analysis.
X-linked inhibitor of apoptosis protein (XIAP) is aberrantly expressed in solid tumors. Considering conflicting data, we conducted this meta-analysis to investigate its prognostic role. Electronic databases were searched to collect studies about associations between XIAP expressions and survival outcomes. ⋯ The results revealed that high XIAP expressions correlated with age (OR = 2.02; 95% CI, 1.07-3.84), lymph node metastasis (OR = 1.69; 95% CI, 1.02-2.77), histological grade (OR = 2.04; 95% CI, 1.01-4.11), and tumor stage (OR = 2.18; 95% CI, 1.20-3.96). The combined HR revealed that high XIAP expressions associated with poor overall survival (OS) (HR = 1.60; 95% CI, 1.22-2.10). Our study suggested high XIAP expressions may be indicative of poor prognosis in solid tumors.
-
Review
Molecular pathogenesis of interstitial cystitis/bladder pain syndrome based on gene expression.
Interstitial cystitis/painful bladder syndrome (IC/PBS) is a chronic bladder inflammation that leads to chronic bladder pain and urinary urgency and frequency. The presentation of IC/PBS is heterogeneous, and it is classified as ulcerative IC/PBS and nonulcerative IC/PBS. ⋯ In addition, there are no gold standards for the detection of this disorder to date. So, determination of gene expression and its role in different signaling pathways in the pathogenesis of this heterogeneous disorder contribute to the more efficient cognition of the pathophysiology of this disease and to the design of effective treatments and molecular diagnostic methods for IC/PBS.
-
The targeted genome modification using RNA-guided nucleases is associated with several advantages such as a rapid, easy, and efficient method that not only provides the manipulation and alteration of genes and functional studies for researchers, but also increases their awareness of the molecular basis of the disease and development of new and targeted therapeutic approaches. Different techniques have been emerged so far as the molecular scissors mediating targeted genome editing including zinc finger nuclease, transcription activator-like effector nucleases, and clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9). CRISPR-Cas9 is a bacterial immune system against viruses in which the single-strand RNA-guided Cas9 nuclease is linked to the targeted complementary sequences to apply changes. ⋯ Considering the reported cases of nonspecific targeting of Cas9 proteins, many studies focused on enhancing the Cas9 features. In this regard, significant advances have been made in choosing guide RNA, new enzymes and methods for identifying misplaced targeting. Here, we highlighted the history and various direct aspects of CRISPR-Cas9, such as precision in genomic targeting, system transfer and its control over correction events with its applications in future biological studies, and modern treatment of diseases.
-
The most important cause of developing hereditary breast cancer is germline mutations occurring in breast cancer (BCs) susceptibility genes, for example, BRCA1, BRCA2, TP53, CHEK2, PTEN, ATM, and PPM1D. Many BC susceptibility genes can be grouped into two classes, high- and low-penetrance genes, each of which interact with multiple genes and environmental factors. However, the penetrance of genes can also be represented by a spectrum, which ranges between high and low. ⋯ In fact, these mutations are very important in developing early onset and increasing the risk of familial breast and ovarian cancer and responsible for 90% of hereditary BC cases. Therefore, according to the conducted studies, screening of BRCA1 and BRCA2 genes is recommended as an important marker for early detection of all patients with breast or ovarian cancer risk with family history of the disease. In this review, we summarize the role of hereditary genes, mainly BRCA1 and BRCA2, in BC.
-
The identification of the mitochondrial contact site and cristae organizing system (MICOS) in the inner mitochondrial membrane shed light on the intricate components necessary for mitochondria to form their signature cristae in which many protein complexes including the electron transport chain are localized. Mic60/mitofilin has been described as the core component for the assembly and maintenance of MICOS, thus controlling cristae morphology, protein transport, mitochondrial DNA transcription, as well as connecting the inner and outer mitochondrial membranes. Although Mic60 homologs are present in many species, mammalian Mic60 is only recently gaining attention as a critical player in several organ systems and diseases with mitochondrial-defect origins. In this review, we summarize what is currently known about the ever-expanding role of Mic60 in mammals, and highlight some new studies pushing the field of mitochondrial cristae organization towards potentially new and exciting therapies targeting this protein.