Ergonomics
-
to determine the reliability and the concurrent validity of the Spineangel lumbo-pelvic postural monitoring device. ⋯ The Spineangel can be used for assessing lumbo-pelvic posture during work or daily-life activities. This device was found to provide reliable and valid measurements for lumbo-pelvic movements. Further research is required to determine whether the use of this device is clinically relevant for patients presenting with low back pain.
-
The aim of this study was to quantify the physiological responses of Police Officers wearing chemical, biological, radiological and nuclear personal protective equipment (CBRN PPE) during firearms house entry (FE) unarmed house entry (UE) and crowd control (CC) simulations. Participants volunteered from the UK Police Force [FE (n = 6, age 33 ± 4 years, body mass 85.3 ± 7.9 kg, (·)VO₂max 53 ± 5 ml · kg⁻¹ · min⁻¹), UE and CC (n = 11, age 34 ± 5 years, body mass 88.5 ± 13.8 kg, (·)VO₂max 51 ± 5 ml · kg⁻¹ · min⁻¹)]. Heart rate reserve (HRR) during FE was greater than UE (74 ± 7 vs. 62 ± 6%HRR, p = 0.01) but lower in CC (39 ± 7%HRR, p < 0.01). Peak core body temperature was greater during FE (39.2 ± 0.3°C) than UE (38.9 ± 0.4°C, p < 0.01) and CC (37.5 ± 0.3°C, p < 0.01), with similar trends in skin temperature. There were no differences in the volume of water consumed (1.13 ± 0.44 l, p = 0.51) or change in body mass (-1.68 ± 0.65 kg, p = 0.74) between simulations. The increase in body temperature was a primary physiological limitation to performance. Cooling strategies and revised operating procedures may improve Police Officers' physical performance while wearing CBRN PPE. ⋯ In recent years, the likelihood of Police Officers having to respond to a chemical, biological, nuclear or radiological (CBRN) incident wearing personal protective equipment (PPE) has increased. Such apparel is likely to increase physiological strain and impair job performance; understanding these limitations may help improve Officer safety and operational effectiveness.
-
We describe different sources of hazards from cardiovascular operating room (CVOR) technologies, how hazards propagate in the CVOR and their impact on cognitive processes. Previous studies have examined hazards from poor design of a specific CVOR technology. However, the impact of different CVOR technologies functioning in context is not clearly understood. In addition, the impact of non-design hazards in technology devices is unclear. Our study identified hazards from organisational, physical/environmental elements, in addition to design of technology in a CVOR. We used observations, follow-up interviews and photographs. With qualitative analyses, we categorised the different hazard sources and their potential impact on cognitive processes. Patient safety can be built into technologies by incorporating user needs in design, decision-making and implementation of medical technologies. ⋯ Effective design and implementation of technology in a safety-critical system requires prospective understanding of technology-related hazards. Our research fills this gap by studying different technologies in context of a CVOR using observations. Qualitative analyses identified different sources for technology-related hazards besides design, and their impact on cognitive processes.
-
When selecting a respirator, it is important to understand how employees' motor, visual and cognitive abilities are impacted by the personal protective equipment. This study compares dust, powered-air-purifying and full-face, negative-pressure respirators. Thirty participants performed three varied tasks. Each participant performed each task without a respirator and while wearing the three respirator types. The tasks included a hand tool dexterity test, the Motor-Free Visual Perception Test and the Serial Sevens Test to evaluate fine motor, visual and cognitive performance, respectively. The time required for task completion and the errors made were measured. Analysis showed no significant effect due to respirator use on the task completion time. A significant increase was found in the error rate when participants performed the cognitive test wearing the full-face, negative-pressure respirator. Participants had varying respirator preferences. They indicated a potential for full-face, negative-pressure respirators to negatively affect jobs demanding high cognitive skills such as problem solving and decision-making. ⋯ while respirators are life-saving personal protective equipment (PPE), they can unintentionally reduce human performance, especially if job characteristics are not considered during PPE selection. An experiment was conducted to compare three respirators (dust respirator, powered-air-purifying respirators and full-face respirator) for varying task types. The full-face respirator was found to affect human cognitive performance negatively.
-
Despite the evidence suggesting that between 8% and 55% of manual labourers experience thoracic pain, research on spinal loading during occupational tasks has been almost invariably limited to the lumbar spine. In this study, we determined the ratio of thoracic to lumbar compression force and the relative risk of injury to each region in various postures. Compressive forces on the spine were calculated based on previously reported thoracic and lumbar intradiscal pressures and disc cross-sectional areas. ⋯ The ratio of thoracic to lumbar compression was above the tolerance ratio (i.e. the ratio of thoracic to lumbar compressive strength) during upright postures and below the tolerance ratio during flexion postures, indicating that upright postures may pose a greater relative risk of injury to the thoracic spine than to the lumbar spine. Practitioner summary: Previously reported thoracic and lumbar in vivo disc pressures during various postures were compared. The ratio of thoracic and lumbar compression increased during upright postures and decreased in flexed postures, indicating that upright postures may pose a greater risk of injury to the thoracic spine than to the lumbar spine.