Bmc Bioinformatics
-
Widespread adoption of high-throughput sequencing has greatly increased the scale and sophistication of computational infrastructure needed to perform genomic research. An alternative to building and maintaining local infrastructure is "cloud computing", which, in principle, offers on demand access to flexible computational infrastructure. However, cloud computing resources are not yet suitable for immediate "as is" use by experimental biologists. ⋯ The expected knowledge and associated effort with deploying a compute cluster in the Amazon EC2 cloud is not trivial. The solution presented in this paper eliminates these barriers, making it possible for researchers to deploy exactly the amount of computing power they need, combined with a wealth of existing analysis software, to handle the ongoing data deluge.
-
Knowledge of structural class is used by numerous methods for identification of structural/functional characteristics of proteins and could be used for the detection of remote homologues, particularly for chains that share twilight-zone similarity. In contrast to existing sequence-based structural class predictors, which target four major classes and which are designed for high identity sequences, we predict seven classes from sequences that share twilight-zone identity with the training sequences. ⋯ The improved predictions stem from the novel features that express collocation of the secondary structure segments in the protein sequence and that combine evolutionary and secondary structure information. Our work demonstrates that conservation and arrangement of the secondary structure segments predicted along the protein chain can successfully predict structural classes which are defined based on the spatial arrangement of the secondary structures. A web server is available at http://biomine.ece.ualberta.ca/MODAS/.
-
Mass spectrometry-based protein identification methods are fundamental to proteomics. Biological experiments are usually performed in replicates and proteomic analyses generate huge datasets which need to be integrated and quantitatively analyzed. The Sequest search algorithm is a commonly used algorithm for identifying peptides and proteins from two dimensional liquid chromatography electrospray ionization tandem mass spectrometry (2-D LC ESI MS(2)) data. A number of proteomic pipelines that facilitate high throughput 'post data acquisition analysis' are described in the literature. However, these pipelines need to be updated to accommodate the rapidly evolving data analysis methods. Here, we describe a proteomic data analysis pipeline that specifically addresses two main issues pertinent to protein identification and differential expression analysis: 1) estimation of the probability of peptide and protein identifications and 2) non-parametric statistics for protein differential expression analysis. Our proteomic analysis workflow analyzes replicate datasets from a single experimental paradigm to generate a list of identified proteins with their probabilities and significant changes in protein expression using parametric and non-parametric statistics. ⋯ For biologists carrying out proteomics by mass spectrometry, our workflow facilitates automated, easy to use analyses of Bioworks (3.2 or later versions) data. All the methods used in the workflow are peer-reviewed and as such the results of our workflow are compliant with proteomic data submission guidelines to public proteomic data repositories including PRIDE. Our workflow is a necessary intermediate step that is required to link proteomics data to biological knowledge for generating testable hypotheses.
-
The comparison of homologous sequences from different species is an essential approach to reconstruct the evolutionary history of species and of the genes they harbour in their genomes. Several complete mitochondrial and nuclear genomes are now available, increasing the importance of using multiple sequence alignment algorithms in comparative genomics. MtDNA has long been used in phylogenetic analysis and errors in the alignments can lead to errors in the interpretation of evolutionary information. Although a large number of multiple sequence alignment algorithms have been proposed to date, they all deal with linear DNA and cannot handle directly circular DNA. Researchers interested in aligning circular DNA sequences must first rotate them to the "right" place using an essentially manual process, before they can use multiple sequence alignment tools. ⋯ The results show that a circularization and rotation pre-processing step significantly improves the efficiency of public available multiple sequence alignment algorithms when used in the alignment of circular DNA sequences. The resulting alignments lead to more realistic phylogenetic comparisons between species.