Evolution; international journal of organic evolution
-
Policing is regarded as an important mechanism for maintaining cooperation in human and animal social groups. A simple model providing a theoretical overview of the coevolution of policing and cooperation has been analyzed by Frank (1995, 1996b, 2003, 2009), and this suggests that policing will evolve to fully suppress cheating within social groups when relatedness is low. Here, we relax some of the assumptions made by Frank, and investigate the consequences for policing and cooperation. ⋯ Finally, we consider the impact of demography on the coevolution of policing and cooperation, in particular the role for kin competition to disfavor the evolution of policing, using both a heuristic "open" model and a "closed" island model. We find that large groups and increased kin competition disfavor policing, and that policing is maintained more readily than it invades. Policing may be harder to evolve than previously thought.
-
Two different, but related, evolutionary theories pertaining to phenotypic plasticity were proposed by James Mark Baldwin and Conrad Hal Waddington. Unfortunately, these theories are often confused with one another. Baldwin's notion of organic selection posits that plasticity influences whether an individual will survive in a new environment, thus dictating the course of future evolution. ⋯ Genetic accommodation is a modern term used to describe the process of heritable changes that occur in response to a novel induction. Genetic accommodation is a key component of the Baldwin effect, and genetic assimilation is a type of genetic accommodation. I here define both the Baldwin effect and genetic assimilation in terms of genetic accommodation, describe cases in which either should occur in nature, and propose that each could play a role in evolutionary diversification.
-
How often will natural selection drive parallel evolution at the DNA sequence level? More precisely, what is the probability that selection will cause two populations that live in identical environments to substitute the same beneficial mutation? Here I show that, under fairly general conditions, the answer is simple: if a wild-type sequence can mutate to n different beneficial mutations, replicate populations will on average fix the same mutation with probability P = 2/(n + 1). This probability, which is derived using extreme value theory, is independent of most biological details, including the length of the gene in question and the precise distribution of fitness effects among alleles. I conclude that the probability of parallel evolution under natural selection is nearly twice as large as that under neutrality.
-
Comparative Study
The effect of alternative prey on the dynamics of imperfect Batesian and Müllerian mimicries.
Both Batesian and Müllerian mimicries are considered classical evidence of natural selection where predation pressure has, at times, created a striking similarity between unrelated prey species. Batesian mimicry, in which palatable mimics resemble unpalatable aposematic species, is parasitic and only beneficial to the mimics. By contrast, in classical Müllerian mimicry the cost of predators' avoidance learning is shared between similar unpalatable co-mimics, and therefore mimicry benefits all parties. ⋯ Birds learned to avoid both Müllerian models and mimics irrespective of the availability of alternative prey. However, the rate of avoidance learning of models increased when alternative prey were abundant. This experiment suggests that the availability of alternative prey affects the dynamics of both Müllerian and Batesian mimicry, but in different ways.
-
Comparative Study
Offspring size-number trade-offs in scorpions: an empirical test of the van Noordwijk and de Jong model.
Life-history traits are expected to exhibit negative phenotypic trade-offs, but often do not. In a seminal paper, van Noordwijk and de Jong (1986) provided an answer to this seeming paradox. According to their model, trade-offs will be more difficult to detect if variation in resource acquisition (or investment) is high relative to variation in resource allocation to the traits under consideration. ⋯ That is, strong trade-offs were found when the investment variance was low relative to the allocation variance. These results were robust to the particular measure of offspring size and to whether offspring data were adjusted for female size variation. My results therefore provide strong evidence in support of the van Noordwijk and de Jong model.