Int J Clin Exp Patho
-
Int J Clin Exp Patho · Jan 2015
Bone marrow mesenchymal stem cells ameliorate neurological deficits and blood-brain barrier dysfunction after intracerebral hemorrhage in spontaneously hypertensive rats.
Spontaneous intracerebral hemorrhage (ICH) is a common and fatal subtype of stroke, with hypertension the most common cause of this disorder. Bone marrow derived mesenchymal stem cells (BM-MSCs) have been shown to elicit protective properties in stroke models. In the present study, male spontaneously hypertensive rats (SHR) were subjected to ICH by intracerebral injection with autologous blood, Wistar-Kyoto (WKY) rats were employed as control. ⋯ Taken together, our results suggest that intravenously transplanted BM-MSCs exert therapeutic effects on ICH in spontaneously hypertensive rats. The underlying mechanisms are associated with the enhanced neurological function recovery and increased integrity of BBB. Our results provide the increased understanding of the underlying mechanisms and perspective of BMSCs in treatment for stroke.
-
Int J Clin Exp Patho · Jan 2015
An exogenous hydrogen sulphide donor, NaHS, inhibits the apoptosis signaling pathway to exert cardio-protective effects in a rat hemorrhagic shock model.
Hydrogen sulfide (H2S) has been reported to be interwined in multiple systems, specifically in the cardiovascular system. However, the mechanisms underlying remain controversial. In the present study, we assessed the cardio-protective effects of H2S in the rat hemorrhagic shock model. ⋯ Moreover, the expression of death receptor Fas and Fas-ligand, as well as the expression of apoptosis-relevant proteins active-caspase 3 and active-caspase 8 were markedly increased. Administration of NaHS significantly ameliorated hemorrhagic shock caused hemodynamic deterioration, decreased myocardial enzymes elevation, protected myocardial ultrastructure, and inhibited the expression of apoptosis-relevant proteins. It suggested that H2S might exert its cardio-protective roles via both the extrinsic Fas/FasL/caspase-8/caspase-3 pathway and the intrinsic mitochondria-involved pathways.
-
Int J Clin Exp Patho · Jan 2015
Blocking HMGB1 signal pathway protects early radiation-induced lung injury.
It has been reported that HMGB1 participated in various types of lung injury. In this study, we explored whether blocking HMGB1 has a preventive effect on the early radiation-induced lung injury and investigate the mechanism. Mice model of radiation-induced lung injury were accomplished by a single dose irradiation (15 Gy) to the whole thorax. ⋯ In addition, HMGB1 antagonist can restrain the expression of type Th2 or Th17 derived inflammatory cytokines TNF-α, IL-6 and IL-17A, promote the expression of Th1 type cytokines INF-γ, and inhibit p65 NF-κB but promote p50 NF-κB activation, which promoted the resolution of the radiation-induced inflammatory response. In conclusion, blocking HMGB1 can reduce the degree of early radiation-induced lung injury, and its mechanism may be related to the promotion of p50NF-κB activation and its downstream molecules expression. Inhibiting HMGB1 may be a new target to deal with early radiation-induced lung injury.
-
Int J Clin Exp Patho · Jan 2015
Spatial and temporal differences of HMGB1 expression in the pancreas of rats with acute pancreatitis.
We aimed to investigate the spatial and temporal differences in expression between HMGB1 and early-stage inflammatory cytokines (IL-1, IL-6 and TNF-α) in pancreas tissue in rats with acute pancreatitis. SD rats (BW 350 ± 30 g, n = 48) were randomly divided into the experimental group (n = 36) which were injected with 5% sodium taurocholate into the bilipancreatic duct retrogradely to produce acute necrotic pancreatitis (ANP) rat models, and the sham-operated (SO) group (n = 12) injected with equal dose of saline. The rats were sacrificed at different time points at 0 h, 3 h, 6 h, 12 h, and 24 h post modeling, respectively. ⋯ The HMGB1 level in the pancreatitis tissue did not change significantly at 3 h and 6 h (P > 0.05), however, it increased remarkably at 12 h, and maintained up to 24 h (P > 0.05). As a late inflammatory factor, the expression of HMGB1 in acute pancreatitis was obviously later than the early inflammatory factors IL-1, TNF-α and IL-6. HMGB1 may play a key role in maintaining the development of the acute pancreatitis.
-
Int J Clin Exp Patho · Jan 2015
Low molecular weight heparin prevents lipopolysaccharide induced-hippocampus-dependent cognitive impairments in mice.
Sepsis-associated encephalopathy (SAE) is a common complication after sepsis development, which is associated with the poor prognosis. However, no effective agent is currently available to treat this complication. The objective of the present study was to investigate whether low-molecular-weight heparin (LMWH) has protective effects against sepsis-induced cognitive impairments. ⋯ The levels of tumor necrosis factor alpha, interleukin (IL)-1β, IL-6, IL-10, malondialdehyde, and superoxide dismutase, Toll-like receptor 4, nuclear factor kappa B p65, inducible nitric oxide synthase, cyclooxygenase-2, occluding, high mobility group box-1, brain derived neurotrophic factor, and IBA1 positive cells were assessed at the indicated time points. LMWH attenuated LPS-induced hippocampus-dependent cognitive impairments, which was accompanied by decreased hippocampal IL-1β, malondialdehyde, Toll-like receptor 4, nuclear factor kappa B p65, inducible nitric oxide synthase, cyclooxygenase-2, high mobility group box-1 protein, and IBA1 positive cells, and increased occluding and brain derived neurotrophic factor levels. In conclusion, LMWH treatment protects against sepsis-induced cognitive impairments by attenuating hippocampal microglial activation, cytokine and oxidative stress production, disruption of blood-brain barrier, and the loss of synaptic plasticity related proteins.