J Hematol Oncol
-
Modulating immune inhibitory pathways has been a major recent breakthrough in cancer treatment. Checkpoint blockade antibodies targeting cytotoxic T-lymphocyte antigen 4 (CTLA-4) and programed cell-death protein 1 (PD-1) have demonstrated acceptable toxicity, promising clinical responses, durable disease control, and improved survival in some patients with advanced melanoma, non-small cell lung cancer (NSCLC), and other tumor types. About 20 % of advanced NSCLC patients and 30 % of advanced melanoma patients experience tumor responses from checkpoint blockade monotherapy, with better clinical responses seen with the combination of anti-PD-1 and anti-CTLA-4 antibodies. ⋯ In this era of precision oncology, there remains a largely unmet need to identify the patients who are most likely to benefit from immunotherapy, to optimize the monitoring assays for tumor-specific immune responses, to develop strategies to improve clinical efficacy, and to identify biomarkers so that immune-related adverse events can be avoided. At this time, PD-L1 immunohistochemistry (IHC) staining using 22C3 antibody is the only FDA-approved companion diagnostic for patients with NSCLC-treated pembrolizumab, but more are expected to come to market. We here summarize the current knowledge, clinical efficacy, potential immune biomarkers, and associated assays for immune checkpoint blockade therapies in advanced solid tumors.
-
Crizotinib as the first-generation ALK inhibitor has shown significant activity in ALK-mutated non-small cell lung cancer (NSCLC). Second- and third-generation ALK inhibitors are entering clinical applications for ALK+ NSCLC. In addition, a third-generation ALK inhibitor, lorlatinib (PF-06463922), was reported to resensitize NSCLC to crizotinib. This review provided a summary of clinical development of alectinib, ceritinib, brigatinib (AP26113), and lorlatinib.
-
While microRNAs (miRNAs) and the KRAS oncogene are known to be dysregulated in various cancers, little is known about the role of miRNAs in the regulation of KRAS in cancer. Here we review a selection of studies published in 2014 that have contributed to our understanding of the molecular mechanisms of KRAS regulation by miRNAs and the clinical relevance of sequence variants that may interfere with functional miRNA-mediated KRAS regulation.
-
Immune thrombocytopenia is an autoimmune disease with abnormal T cell immunity. Cytotoxic T cells, abnormal T regulatory cells, helper T cell imbalance, megakaryocyte maturation abnormalities and abnormal T cell anergy are involved in the pathogenesis of this condition. ⋯ The induction of T cell tolerance is an important mechanism by which the pathogenesis and treatment of immune thrombocytopenia can be studied. Studies regarding the roles of the new inducible costimulator signal transduction pathway, the ubiquitin proteasome pathway, and the nuclear factor kappa B signal transduction pathway in the induction of T cell tolerance can help improve our understanding of immune theory and may provide a new theoretical basis for studying the pathogenesis and treatment of immune thrombocytopenia.
-
Review
Chimeric antigen receptor-engineered T cells for cancer immunotherapy: progress and challenges.
Recent years have witnessed much progress in both basic research and clinical trials regarding cancer immunotherapy with chimeric antigen receptor (CAR)-engineered T cells. The unique structure of CAR endows T cell tumor specific cytotoxicity and resistance to immunosuppressive microenvironment in cancers, which helps patients to better tackle the issue of immunological tolerance. ⋯ However, it is very important for us to evaluate thoroughly the challenges/obstacles before widespread clinical application, which clearly warrants more studies to improve our understanding of the mechanism underlying AIT. In this review, we focus on the critical issues related to the clinical outcomes of CAR-based adoptive immunotherapy and discuss the rationales to refine this new cancer therapeutic modality.