Neurosurg Focus
-
An intractable increase in intracranial pressure (ICP) leading to a progressive decrease in cerebral perfusion pressure (CPP) and cerebral blood flow (CBF) is the dominating cause of death in patients with severe brain trauma. Arterial hypotension may further compromise CPP (and CBF) and significantly contributes to death. In addition, the injured brain is sensitive to raised CPP due to an increased permeability of the blood-brain barrier (BBB) to crystalloids and an impaired pressure autoregulation of the CBF. ⋯ This level varies among different patients and different areas of the brain. In fact, the penumbral zones surrounding focal brain lesions appear to be the most sensitive. In the individual patient, preservation of normal cerebral energy metabolism within areas at risk during a decrease in CPP can be guaranteed by performing intracerebral microdialysis and bedside biochemical analyses.
-
Comparative Study
Outcome of severe traumatic brain injury: comparison of three monitoring approaches.
The determination of cerebral perfusion pressure (CPP) is regarded as vital in monitoring patients with severe traumatic brain injury. Besides indicating the status of cerebral blood flow (CBF), it also reveals the status of intracranial pressure (ICP). The abnormal or suboptimal level of CPP is commonly correlated with high values of ICP and therefore with poor patient outcomes. ⋯ Only time between injury and arrival (p = 0.001) was statistically significant. There was a statistically significant difference in the proportions of good outcomes between the multimodality group compared with the group of patients that underwent a single intracranial-based monitoring method and the group that received no monitoring (p = 0.003) based on a disability rating scale after a follow up of 12 months. Death was the focus of outcome in this study in which the multimodality approach to monitoring had superior results.