Neurosurg Focus
-
Review Case Reports
Management of anterior inferior cerebellar artery aneurysms: an illustrative case and review of literature.
Aneurysms of the anterior inferior cerebellar artery (AICA) are relatively rare among intracranial aneurysms. They can occur in 1 of 3 regions of the AICA: 1) craniocaudal (high or low riding), 2) mediolateral-premeatal (proximal), and 3) meatal-postmeatal (distal). The management strategies for treatment differ according to the location and configuration of the aneurysm. ⋯ Treatment of these lesions requires detailed knowledge of the anatomy, and an anatomical overview of the AICA with its arterial loops and significant branches is presented, including a discussion of the internal auditory (labyrinthine) artery, recurrent perforating arteries, subarcuate artery, and cerebellosubarcuate artery. The authors discuss the various surgical approaches (retromastoid, far lateral, subtemporal, and transclival) with appropriate illustrations, citing the advantages and disadvantages in accessing these AICA lesions in relation to these approaches. The complications of these different surgical techniques and possible clinical effects of parent artery occlusion during AICA surgery are highlighted.
-
Spinal dural arteriovenous fistulas (DAVFs) are the most common spinal vascular malformations and can be a significant cause of myelopathy, yet remain inefficiently diagnosed lesions. Over the last several decades, the treatment of spinal DAVFs has improved tremendously due to improvements in neuroimaging, microsurgical, and endovascular techniques. The aim of this paper was to review the existing literature regarding the clinical characteristics, classification, and endovascular management of spinal DAVFs. ⋯ Endovascular embolization is an increasingly effective therapy in the treatment of spinal DAVFs, and can be used as a definitive intervention in the majority of patients that undergo modern endovascular intervention. A multidisciplinary approach to the treatment of these lesions is required, as surgery is required for refractory cases or those not amenable to embolization. Newer embolic agents, such as Onyx, hold significant promise for future therapy, yet long-term follow-up studies are required.
-
The scientific understanding of the nature of arteriovenous malformations (AVMs) in the brain is evolving. It is clear from current work that AVMs can undergo a variety of phenomena, including growth, remodeling, and/or regression-and the responsible processes are both molecular and physiological. A review of these complex processes is critical to directing future therapeutic approaches. The authors performed a comprehensive review of the literature to evaluate current information regarding the genetics, pathophysiology, and behavior of AVMs. ⋯ The dynamic nature of brain AVMs is at least in part attributable to hemodynamic and flow-related phenomena. These forces acting on an evolving structure are critical to understanding the challenges in endovascular and surgical therapy. As knowledge in this field continues to progress, the natural history and predicted behavior of these AVMs will become more clearly elucidated.
-
This report demonstrates that time-of-flight (TOF) MR angiography is a useful adjunct for planning stereotactic radiosurgery (SRS) of large arteriovenous malformations (AVMs) after staged embolization with Onyx. Onyx (ethylene vinyl copolymer), a recently approved liquid embolic agent, has been increasingly used to exclude portions of large AVMs from the parent circulation prior to SRS. Limiting SRS to regions of persistent arteriovenous shunting and excluding regions eliminated by embolization may reduce unnecessary radiation doses to eloquent brain structures. ⋯ The 3D TOF MR angiography images of the circle of Willis and vertebral arteries were subsequently obtained to visualize AVM regions embolized with Onyx (TR 37 msec, TE 6.9 msec, flip angle 20 degrees). Adjunct TOF MR angiography images demonstrated excellent contrast between nidus embolized with Onyx and regions of persistent arteriovenous shunting within a large AVM prior to SRS. Additional information derived from these sequences resulted in substantial adjustments to the treatment plan and an overall reduction in the treated tissue volume.
-
Cerebral vasospasm is a common and potentially devastating complication of aneurysmal subarachnoid hemorrhage (aSAH). Inflammatory processes seem to play a major role in the pathogenesis of vasospasm. The C-reactive protein (CRP) constitutes a highly sensitive inflammatory marker. The association of elevated systemic CRP and coronary vasospasm has been well established. Additionally, elevation of the serum CRP levels has been demonstrated in patients with aSAH. The purpose of the current study was to evaluate the possible relationship between elevated CRP levels in the serum and CSF and the development of vasospasm in patients with aSAH. ⋯ Patients with aSAH who had high Hunt and Hess and Fisher grades and low GCS scores showed elevated CRP levels in their CSF and serum. Furthermore, patients developing angiographically proven vasospasm demonstrated significantly elevated CRP levels in serum and CSF, and increased CRP measurements were strongly associated with poor clinical outcome in this cohort.