Journal of neurophysiology
-
Comparative Study
A-type voltage-gated K+ currents influence firing properties of isolectin B4-positive but not isolectin B4-negative primary sensory neurons.
Voltage-gated K+ channels (Kv) in primary sensory neurons are important for regulation of neuronal excitability. The dorsal root ganglion (DRG) neurons are heterogeneous, and the types of native Kv currents in different groups of nociceptive DRG neurons are not fully known. In this study, we determined the difference in the A-type Kv current and its influence on the firing properties between isolectin B4 (IB4)-positive and -negative DRG neurons. ⋯ Additionally, IB4-positive neurons are immunoreactive to Kv1.4 but not to Kv1.1 and Kv1.2 subunits. Collectively, this study provides new information that 4-AP-sensitive A-type Kv currents are mainly present in IB4-positive DRG neurons and preferentially dampen the initiation of action potentials of this subpopulation of nociceptors. The difference in the density of A-type Kv currents contributes to the distinct electrophysiological properties of IB4-positive and -negative DRG neurons.
-
Comparative Study
Perceptual consequences of disrupted auditory nerve activity.
Perceptual consequences of disrupted auditory nerve activity were systematically studied in 21 subjects who had been clinically diagnosed with auditory neuropathy (AN), a recently defined disorder characterized by normal outer hair cell function but disrupted auditory nerve function. Neurological and electrophysical evidence suggests that disrupted auditory nerve activity is due to desynchronized or reduced neural activity or both. Psychophysical measures showed that the disrupted neural activity has minimal effects on intensity-related perception, such as loudness discrimination, pitch discrimination at high frequencies, and sound localization using interaural level differences. ⋯ We also proposed two underlying physiological models based on desynchronized and reduced discharge in the auditory nerve to successfully account for the observed neurological and behavioral data. These methods and measures cannot differentiate between these two AN models, but future studies using electric stimulation of the auditory nerve via a cochlear implant might. These results not only show the unique contribution of neural synchrony to sensory perception but also provide guidance for translational research in terms of better diagnosis and management of human communication disorders.
-
Comparative Study
Pursuit--vestibular interactions in brain stem neurons during rotation and translation.
Under natural conditions, the vestibular and pursuit systems work synergistically to stabilize the visual scene during movement. How translational vestibular signals [translational vestibuloocular reflex (TVOR)] are processed in the premotor pathways for slow eye movements continues to remain a challenging question. To further our understanding of how premotor neurons contribute to this processing, we recorded neural activities from the prepositus and rostral medial vestibular nuclei in macaque monkeys. ⋯ We also found that neural responses under stable gaze conditions could not always be predicted by a linear vectorial addition of the cell activities during pursuit and VOR cancellation. The departure from linearity was more pronounced for the TVOR under near-viewing conditions. These results extend previous observations for the neural processing of otolith signals within the premotor circuitry that generates the RVOR and smooth pursuit eye movements.
-
Editorial Historical Article
The physiology of the peripheral vestibular system: the birth of a field.
-
To elucidate the effect of chronic inflammation on spinal nociceptive neurons in the elderly, we compared nocifensive behavior, peripheral inflammatory responses, and spinal dorsal horn neuronal activities between the aged (29-34 mo) and adult (7-12 mo) male rats after injection of complete Freund's adjuvant (CFA) into the hind paw. Aged rats exhibited a significantly lower mechanical paw withdrawal threshold before inflammation. However, after CFA injection mechanical allodynia developed in both adult and aged rats after CFA injection. ⋯ Two days after CFA injection, Fos expression increased similarly in aged and adult rats. Thus the aged rats showed enhanced peripheral inflammatory responses to CFA injection with only a slight change in dorsal horn neuronal activity. Together with our previous finding that nociceptive neurons in aged rats exhibit hyperexcitability, these results suggest that the dorsal horn nociceptive system becomes sensitized with advancing age and its excitability cannot be further increased by inflammation.