Journal of neurophysiology
-
It is well established that the vanilloid receptor, VR1, is an important peripheral mediator of nociception. VR1 receptors are also located in several brain regions, yet it is uncertain whether these supraspinal VR1 receptors have any influence on the nociceptive system. To investigate a possible nociceptive role for supraspinal VR1 receptors, capsaicin (10 nmol in 0.4 microl) was microinjected into either the dorsal (dPAG) or ventral (vPAG) regions of the periaqueductal gray. ⋯ VR1 receptor immunostaining was observed in the dPAG of untreated rats. Microinjection of capsaicin likely sensitized and then desensitized dPAG neurons affecting nocifensive reflexes and RVM neuronal activity. These results suggest that supraspinal VR1 receptors in the dPAG contribute to descending modulation of nociception.
-
This study was designed to examine interlimb asymmetries in responding to unpredictable changes in inertial loads, which have implications for our understanding of the neural mechanisms underlying handedness. Subjects made repetitive single joint speed constrained 20 degrees elbow flexion movements, while the arm was supported on a horizontal, frictionless, air-jet system. On random trials, a 2-kg mass was attached to the arm splint prior to the "go" signal. ⋯ As a result, the dominant arm overcompensated the effects of the load, producing a large and systematic overshoot of final position. These results indicate more effective load compensation responses for the nondominant arm; supporting a specialized role of the nondominant arm/hemisphere system in sensory feedback mediated error correction mechanisms. The results also suggest that specialization of the dominant arm system for controlling limb and task dynamics is specifically related to feedforward control mechanisms.
-
Orexins (hypocretins) are recently discovered excitatory transmitters implicated in arousal and sleep. Yet, their ionic and signal transduction mechanisms have not been fully clarified. Here we show that orexins suppress G-protein-coupled inward rectifier (GIRK) channel activity, and this suppression is likely to lead to neuronal excitation. ⋯ The OXA-induced initial current was partially pertussis toxin (PTX) sensitive and partially PTX insensitive, whereas the OXA-suppressed current was PTX insensitive. These data suggest that orexin receptors couple with more than one type of G-protein, including PTX-sensitive (such as Gi/o) and PTX-insensitive (such as Gq/11) G-proteins. The modulation of GIRK channels by orexins may be one of the cellular mechanisms for the regulation of brain nuclei (e.g., LC and TM) that are crucial for arousal, sleep, and appetite.
-
When studied in vitro, type I hair cells in amniote vestibular organs have a large, negatively activating K+ conductance. In type II hair cells, as in nonvestibular hair cells, outwardly rectifying K+ conductances are smaller and more positively activating. As a result, type I cells have more negative resting potentials and smaller input resistances than do type II cells; large inward currents fail to depolarize type I cells above -60 mV. ⋯ The Ca2+ current included an L-type component with relatively low sensitivity to dihydropyridine antagonists, consistent with the alpha subunit being CaV1.3 (alpha1D). Rat vestibular epithelia and ganglia were probed for L-type alpha-subunit expression with the reverse transcription-polymerase chain reaction. The epithelia expressed CaV1.3 and the ganglia expressed CaV1.2 (alpha1C).
-
Temporal summation of heat pain during repetitive stimulation is dependent on C nociceptor activation of central N-methyl-d-aspartate (NMDA) receptor mechanisms. Moderate temporal summation is produced by sequential triangular ramps of stimulation that control skin temperature between heat pulses but do not elicit distinct first and second pain sensations. Dramatic summation of second pain is produced by repeated contact of the skin with a preheated thermode, but skin temperature between taps is not controlled by this procedure. ⋯ In contrast to heat stimulation, skin temperature did not recover between cold stimuli throughout ISIs of 3-8 s. Psychophysically, repetitive cold stimulation produced an aching pain sensation that progressed gradually and radiated beyond the site of stimulation. The magnitude of aching pain was well related to skin temperature and thus appeared to be established primarily by peripheral factors.