Journal of neurophysiology
-
During rhythmic voluntary oscillations of the foot, the excitability of the H-reflex in the Flexor Carpi Radialis (FCR) muscle of the resting prone forearm increases during the foot plantar-flexion and decreases during dorsiflexion. It is known that, when the two extremities are moved together, isodirectional (in-phase) coupling is the preferred form of movement association. Thus the above pattern of the H-reflex excitability modulation may favor the preferred coupling between the two limbs. ⋯ Simultaneously, the FCR H-reflex modulation advanced by that same amount with respect to the foot movement, thus remaining phase-locked to the EMG onsets. Similarly, when movement frequency was varied step-wise between 1.0 and 2.0 Hz, the foot movement was progressively delayed with respect to both the EMG onset (Sol and TA) and the FCR H-reflex modulation, so that the phase relation between the motor command to the foot and the H-modulation in the forearm remained constant. These results suggest that modulation of H-reflex in the forearm is tied to leg muscle contraction, rather than to foot kinematics, and point to a central, rather than kinesthetic, origin for the modulation.
-
The contribution for the development of secondary mechanical hyperalgesia by peripheral mechanisms has not been fully elucidated. We have reevaluated the effects of local anesthetics on electrically evoked flare reaction and mechanical hyperalgesia in human skin. We applied 2% lidocaine via intradermal microdialysis fibers at a length of 10 cm for 110 min to the volar forearm to establish a narrow and stable "anesthetic strip." After 60 min of lidocaine perfusion, transdermal electrical stimulation (1 Hz, 50 mA) was applied at a distance of 1 cm from the microdialysis fibers for 30 min. ⋯ In contrast, allodynia (7.4 +/- 0.7 and 8.6 +/- 0.9 cm) and punctate hyperalgesia (7.6 +/- 0.7 and 8.6 +/- 0.9 cm) developed symmetrically on both sides of the anesthetic strip. Allodynia subsided 4 min after the end of the electrical stimulation. We conclude that the development of allodynia and punctate hyperalgesia in human skin is centrally mediated, whereas the axon reflex vasodilation is of peripheral origin.
-
The location of the human nociceptive area(s) near the Sylvian fissure is still controversial in spite of evidence from imaging and evoked potential studies that noxious heat stimuli activate somatosensory areas in that region. Some studies have suggested the secondary somatosensory cortex (SII) on the upper bank of the Sylvian fissure posterior to the central sulcus, others the anterior insula or parietal area 7b. In this study, we applied dipole source analysis techniques to laser-evoked potentials (LEPs) that were recorded from subdural grid electrodes in three patients. ⋯ At the latency of the first GFP peak, source orientation pointed inward, suggesting a generator within the inner vertical surface of the operculum. Somatotopy was assessed in one patient and was consistent with that of the projection area of the presumed nociceptive thalamic nucleus posterior part of the ventromedial nucleus, but differed from that of SII. These findings suggest that the nociceptive area in human parasylvian cortex that is activated most rapidly by noxious heat pulses may be separate from the tactile SII area.
-
This study investigated the static and dynamic characteristics of the pupillary light reflex (PLR) in the alert rhesus monkey. Temporal characteristics of the PLR were investigated with Maxwellian viewing during sinusoidal changes in illumination of a 36 degrees stimulus in both monkeys and humans. Bode plots of the PLR response were fitted by a linear model composed of a delay combined with a cascaded first- and second-order filter. ⋯ These pupillomotor fields revealed that, as has been reported for humans, stimuli at the fovea and surrounding macular region of monkeys produce substantially larger pupillary responses than more peripheral stimuli and that binocular responses are substantially greater than can be accounted for by the linear summation of binocular retinal illuminance. In conclusion, we found that the spatial characteristics of the PLR of the rhesus monkey are very similar, in all important aspects, to those reported for humans and that the temporal responses of the PLR are comparable between the two species. The rhesus monkey thus provides an excellent model for experimental studies of the neural control of the pupil.
-
A fundamental question in vertebrate locomotion is whether distinct spinal networks exist that are capable of generating rhythmic output for each group of muscle synergists. In many vertebrates including the lamprey, it has been claimed that burst activity depends on reciprocal inhibition between antagonists. This question was addressed in the isolated lamprey spinal cord in which the left and right sides of each myotome display rhythmic alternating activity. ⋯ Ipsilateral glycinergic inhibition was not required for the hemicord burst pattern generation, suggesting that an interaction between excitatory glutamatergic neurons suffices to produce the unilateral burst pattern. In NMDA, burst activity at a much lower rate (0.1-0.4 Hz) was also encountered, which required the voltage-dependent properties of NMDA receptors in contrast to the fast rhythm. Swimming is thus produced by pairs of unilateral burst generating networks with reciprocal inhibitory connections that not only ensure left/right alternation but also downregulate frequency.