Journal of neurophysiology
-
It is well known that electrical stimulation of primary somatosensory cortex (SI) evokes movements that resemble those evoked from primary motor cortex. These findings have led to the concept that SI may possess motor capabilities paralleling those of motor cortex and speculation that SI could function as a robust relay mediating motor responses from central and peripheral inputs. The purpose of this study was to rigorously examine the motor output capabilities of SI areas with the use of the techniques of spike- and stimulus-triggered averaging of electromyographic (EMG) activity in awake monkeys. ⋯ Single-pulse intracortical microstimulation produced effects at all CM cell sites in motor cortex but at only 14% of SI sites. The large fraction of SI effects that was inhibitory represented yet another marked difference between CM cell sites in motor cortex and SI sites (25% vs 93%). The fact that motor output effects from SI were frequently absent or very weak and predominantly inhibitory emphasizes the differing motor capabilities of SI compared with primary motor cortex.
-
To investigate the spinal processing of cutaneous pruritic and algesic stimuli, single-unit recordings were made from wide-dynamic-range-type lumbar spinal dorsal horn neurons in pentobarbital-sodium-anesthetized rats. Neuronal responses were recorded to mechanical and noxious thermal stimuli, as well as to microinjection (1 microl) of histamine (0.01-10% = 9 x 10(-1)-9 x 10(-4) M), capsaicin (0.1% = 3.3 x 10(-3) M), or other algesic chemicals into skin within the receptive field via intracutaneously placed needles. Most (84%) of the 89 neurons responded to intracutaneous (i.c.) microinjection of histamine with a brief phasic discharge followed by an afterdischarge of variable (s to min) duration. ⋯ The mean response to 80% ethanol was significantly smaller than to 0.1% capsaicin. All units tested also responded to topical application of mustard oil (50%) and i.c. serotonin (30 microg). The results are discussed in terms of theories that attempt to reconcile psychophysical and clinical observations of pain and itch sensation.
-
Whole cell current- and voltage-clamp recording techniques were employed in a rat thalamocortical slice preparation to characterize corticothalamic stimulation-evoked responses in thalamic neurons. Three types of corticothalamic stimulation-evoked responses were observed in thalamic neurons. Of thalamic neurons, 57% responded to corticothalamic stimulation with purely excitatory synaptic responses, whereas 27% had inhibitory synaptic responses and 16% had mixed excitatory/inhibitory responses. ⋯ Corticothalamic feedback onto thalamic relay neurons activated diverse responses due to differing relative activation of NRT and "feedforward" inhibitory responses. These multiple in vitro corticothalamic responses differ from responses encountered in other in vitro thalamic preparations lacking a synaptically connected neocortex, but are similar to results evident in thalamic neurons in response to cortical stimulation in vivo. In addition, the thalamocortical 3- to 6-Hz frequency preference was conserved, suggesting that many factors critical for this emergent property of the thalamocortical system are maintained in vitro.
-
Responses of cutaneous nociceptors to natural stimuli, particularly mechanical and heat stimuli, have been well documented. Although nociceptors are excited by noxious cold stimuli, there have been few studies of their stimulus-response functions for cold stimuli over a wide range of stimulus temperatures. Furthermore, the proportion of nociceptors excited by noxious cold is not clear. ⋯ It is concluded that the proportion of cutaneous A delta-nociceptors excited by noxious cold stimuli has been underestimated in previous studies. All nociceptors were excited by stimulus temperatures <0 degrees C and encoded the intensity of cold stimuli. It is therefore likely that cutaneous A delta-nociceptors contribute to the sensation of cold pain, particularly pain produced by stimulus temperatures <0 degrees C.
-
Comparative Study
Properties of unitary IPSCs in hippocampal pyramidal cells originating from different types of interneurons in young rats.
Whole cell recordings were used in hippocampal slices of young rats to examine unitary inhibitory postsynaptic currents (uIPSCs) evoked in CA1 pyramidal cells at room temperature. Loose cell-attached stimulation was applied to activate single interneurons of different subtypes located in stratum oriens (OR), near stratum pyramidale (PYR), and at the border of stratum radiatum and lacunosum-moleculare (LM). uIPSCs evoked by stimulation of PYR and OR interneurons had similar onset latency, rise time, peak amplitude, and decay. In contrast, uIPSCs elicited by activation of LM interneurons were significantly smaller in amplitude and had a slower time course. ⋯ A small, but not significant, paired pulse depression (90.8 +/- 4.0%) was found when the first uIPSC was larger than the mean of all first uIPSCs. Our results indicate that these different subtypes of hippocampal interneurons generate Cl(-)-mediated GABA(A) uIPSCs. uIPSCs originating from different types of interneurons may have heterogeneous properties and may be subject to tonic presynaptic inhibition via heterosynaptic GABA(B) receptors. These results suggest a specialization of function for inhibitory interneurons and point to complex presynaptic modulation of interneuron function.