Journal of neurophysiology
-
1. Membrane currents of hair cells in acutely excised or cultured mouse utricles were recorded with the whole cell voltage-clamp method at temperatures between 23 and 36 degrees C. 2. Type I and II hair cells both had delayed rectifier conductances that activated positive to -55 mV. 3. ⋯ Warming the cells to 36 degrees C produced parallel shifts in gK,L's activation range (0.8 +/- 0.3 mV/degrees C, n = 8), and in the resting potential (0.6 +/- 0.3 mV/degrees C, n = 4). Thus the high input conductances were not an artifact of unphysiological temperatures but remained high near body temperature. It remains possible that in vivo gK,L's activation range is less negative and input conductances are lower; the large variance in the voltage range of activation suggests that it may be subject to modulation.
-
1. This report examines alterations in presynaptic and postsynaptic processes mediated by gamma-aminobutyric acid-B (GABAB) receptors within hippocampal region CA1 in a model of chronic temporal lobe epilepsy (TLE). Intracellular recordings were obtained in pyramidal cells from combined hippocampal/parahippocampal control slices and slices obtained > or = 1 mo after a period of self-sustaining limbic status epilepticus (SSLSE) induced by continuous hippocampal stimulation. 2. ⋯ GABAB receptor agonists and antagonists had no effect on post-SSLSE CA1 pyramidal cell synaptic responses, whereas antagonists of the GABAA receptor completely eliminated IPSPs. Repetitive activation produced no use-dependent synaptic depression. The implications of these findings for the epileptogenic potential of post-SSLSE CA1 and the "dormant basket cell" hypothesis are discussed.
-
Comparative Study Clinical Trial Controlled Clinical Trial
Comparison of human cerebral activation pattern during cutaneous warmth, heat pain, and deep cold pain.
1. We wished to determine whether there are differences in the spatial pattern and intensity of synaptic activity within the conscious human forebrain when different forms and intensities of innocuous and noxious thermal stimuli are experienced. Accordingly, positron emission tomography (PET) with intravenous injection of H2(15)O was used to detect increases in regional cerebral blood flow (rCBF) in normal humans as they discriminated differences in the intensity of noxious and innocuous thermal stimulation applied to the nondominant (left) arm. ⋯ For discrimination between tonic innocuous cold and tonic cold pain, the left hand was immersed to the wrist, throughout each of six scans, in water kept at an average temperature of either 20.5 +/- 1.15 degrees C (mean +/- SD) or 6.02 +/- 1.18 degrees C (mean +/- SD) on alternate scans. All subjects rated the intensity of the stimuli on a scale in which 0 indicated no pain and 10 represented barely tolerable pain. Subjects rated the 20 degrees C water immersion as painless (average rating 0.18 +/- 0.48, mean +/- SD), but gave ratings indicating i
-
Randomized Controlled Trial Clinical Trial
Human express saccade makers are impaired at suppressing visually evoked saccades.
1. We report the oculomotor behavior of human subjects who produce unusually high numbers (> 30%) of express saccades (latency range 85-135 ms) in the overlap saccade task, where express saccades are usually absent or small in number (< 15%). We refer to these subjects as "express saccade makers" (ES makers). 2. ⋯ The collicular fixation neurons are probably the final common pathway in the control of active fixation, and are in mutual inhibitory relationship with the saccade cells. 6. The decreased saccadic control observed in the ES makers suggests that saccade execution in humans is also gated by a fixation system. These ES makers may have reduced voluntarily control over saccade generation as a result of a defect or poor development of their fixation system.
-
Comparative Study
Membrane properties and synaptic currents evoked in CA1 interneuron subtypes in rat hippocampal slices.
1. Intrinsic membrane properties and pharmacologically isolated excitatory and inhibitory postsynaptic currents (EPSCs and IPSCs, respectively) were characterized with the use of whole cell current- and voltage-clamp recordings, in combination with biocytin labeling, in different subtypes of CA1 interneurons and pyramidal cells in rat hippocampal slices. 2. Three classes of interneurons were selected on the basis of their soma location in the CA1 region: 1) in stratum (str.) oriens near the alveus (O/A), 2) near str. pyramidale, and 3) near the border of str. radiatum and lacunosum-moleculare. ⋯ GABAA IPSCs were reversibly blocked by BIC. 9. In conclusion, morphologically different subtypes of interneurons located in O/A, near str. pyramidale, and near the str. radiatum/lacunosum-moleculare border displayed intrinsic membrane properties that were distinct from pyramidal cells, but were similar among them. In contrast, the properties of non-NMDA, NMDA, and GABAA postsynaptic currents were similar between interneurons and pyramidal cells, except for NMDA EPSCs, which had slower rise times in O/A interneurons.